Return to search

Plant-Herbivore Interactions and Evolutionary Potential of Natural Arabidopsis lyrata Populations

In this thesis, I combined field, greenhouse and common-garden experiments to examine the ecological and evolutionary consequences of plant-herbivore interactions and the genetic architecture of fitness-related traits in the insect-pollinated, self-incompatible, perennial herb Arabidopsis lyrata. More specifically, I examined (1) whether damage to leaves and inflorescences affects plant fitness non-additively, (2) whether trichome production is associated with a cost in terms of reduced tolerance to leaf and inflorescence damage, (3) whether young plant resistance to a specialist insect herbivore varies among populations, and (4) whether the evolution of flowering time, floral display and rosette size is constrained by lack of genetic variation or by genetic correlations among traits. A two-year field experiment in a Swedish population showed that damage to rosette leaves and to inflorescences can affect both current and future plant performance of A. lyrata, and that effects on some fitness components are non-additive. A two-year field experiment in another Swedish population indicated that trichome-producing plants are not less tolerant than glabrous plants to leaf and inflorescence damage. In a greenhouse experiment, acceptability of young plants (5-6 weeks old) to ovipositing females and damage received by Plutella xylostella larvae varied considerably among twelve A. lyrata populations. Both oviposition and leaf damage were positively correlated with rosette size, but trichome density in the trichome-producing morph was apparently too low at this developmental stage to influence resistance to P. xylostella. In a common-garden experiment, flowering time, floral display and rosette size varied among four Scandinavian A. lyrata populations, and displayed significant additive genetic variation in some populations. Yet, strong genetic correlations between flowering start and number of flowers, and between petal length and petal width suggest that these traits may not evolve independently. Taken together, the results indicate the need to consider possible long-term and non-additive effects of herbivore damage to different plant parts, that there is no trade-off between trichome production and tolerance to herbivory, that the importance of morphological defenses against herbivory may change through plant ontogeny, and that considerable genetic variation for traits such as flowering time and floral display can be maintained in natural plant populations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-183433
Date January 2012
CreatorsPuentes, Adriana
PublisherUppsala universitet, Växtekologi och evolution, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 996

Page generated in 0.0019 seconds