Return to search

Development of Vapor Sensors for Volatile Museum Contaminants by Surface Enhanced Raman Spectroscopy (SERS)

Detection and identification of pesticide residues on objects of cultural heritage is a serious and urgent challenge that currently faces many museums, Native American communities, and private collections worldwide. Organic artifact materials, such as wood, animal hide, basketry, textiles, paper, horn and bone, have traditionally been treated with pesticides to eradicate and prevent infestation by insects, rodents, and mold. These poisonous substances can persist for years in the controlled environment of a museum storeroom and present a potential poisoning risk to people who come in contact with the objects. Surface-enhanced Raman spectroscopy (SERS) has the potential to detect volatile organic pesticides in this context. The technique can overcome the insensitivity of normal Raman spectroscopy and fluorescence interference, and make possible detection of many organic compounds in parts per million concentration. This investigation is aimed at evaluating SERS for the detection and identification of volatiles in museums, with emphasis on naphthalene vapor. The potential of several SERS-active materials; Tollens mirrors, gold film over nanosphere arrays, citrate-stabilized colloidal silver, and nanoporous gold; to detect Rhodamine B and naphthalene is investigated. The research also highlights the mechanisms that underlie SERS, and the relationship between substrate nanostructure and SERS performance.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/283712
Date January 2010
CreatorsMadden, Odile Marguerite, Madden, Odile Marguerite
ContributorsOdegaard, Nancy, Simmons, Joseph H., Potter, Barrett G., Vandiver, Pamela, Odegaard, Nancy
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds