Return to search

Produção e caracterização de proteínas do complexo celulolítico de Trichoderma harzianum, envolvidas na hidrólise enzimática da biomassa / Production and Characterization of proteins from the cellulolytic cocktail of Trichoderma harzianum, involved in enzymatic hydrolysis of biomass

Celulases têm atraído muito interesse nos últimos anos devido a sua habilidade na bioconversão de material lignocelulolítico em glucose, a qual pode, então, ser convertida a etanol por fermentação. O complexo celulolítico capaz de degradar a celulose consiste de várias enzimas (principalmente celulases e β-glucosidases) e proteínas auxiliadoras, que atuam em sinergismo para eficientemente hidrolizar a biomassa. Nesse estudo, investigou-se a hidrólise enzimática do bagaço de cana-de-açúcar pré-tratado utilizando enzimas produzidas por T. harzianum e enzima comerial. O rendimento de hidrólise foi avaliado quanto a diferentes níveis de deslignificação de biomassa, graus de cristalinidade da celulose, composição dos coquetéis enzimáticos e adição de BSA. Estudos de difração de raios-X mostraram que a cristalinidade da lignocelulose não é um fator determinante na recalcitrância ao ataque enzimático. Além disso, a adição de BSA não teve qualquer efeito no rendimento da hidrólise. O mais eficiente coquetel enzimático foi obtido misturando o preparado comercial com o produzido pelo T. harzianum (rendimento acima de 97%). Esse desempenho está, provavelmente, relacionado com níveis adequados de β-glucosidases e xilanases no coquetel. Devido a essa eficiente atividade celulolítica, o fungo T. harzianum tem um grande potencial em aplicação para hidrólise de biomassa. A celobiohidrolase I, uma exoglucanase, é a principal enzima secretada por esse fungo (cerca de 60% do total) e nesse estudo ela foi expressa em bioreator, purificada por cromatografia de troca iônica seguida de gel filtração e caracterizada bioquímica, biofísica e estruturalmente. Conforme confirmado por SAXS, tanto a CBHI inteira quanto seu domínio catalítico, obtido por digestão parcial com papaína, são monoméricos em solução e apresentam distância máxima (DMax) de 110 e 60 Å, e raio de giro (Rg) de 20 e 27 Å, respectivamente. Os resultados indicam que o linker é flexível em solução e confirmam o formato de girino da enzima. A CBHI possui atividade máxima em pH 5.0 e temperatura de 50 °C, com atividade específica contra Avicel &reg e pNPC de 0,28 and 1,53 U/mg, respectivamente. Outras celulases de interesse foram também expressas para caracterização, no entanto, para essas, foi utilizado o sistema de expressão heteróloga em Aspergillus Níger ou Pichia pastoris. O domínio catalítico da endoglucanase I de T. harzianum foi expresso em A. Níger. A proteína tem atividade específica contra CMC de 15,8 U/mg e pH e temperatura ótima de 3 e 50 °C, respectivamente. A proteína é estável nessas condições em até 3 dias de incubação (dados de ensaios de atividade residual). Estudos biofísicos de deslocamento térmico e dicroísmo circular apresentaram alguns parâmetros de estabilidade de estrutura terciária e secundária, respectivamente. A proteína perde estrutura terciária regular, em pH 5, em torno de 30 °C mas sua estrutura secundária é desordenada somente em pH 9 (quando a 25 °C). Experimentos de dicroísmo circular também indicaram a composição de estrutura secundária do domínio catalítico da EGLI de 6% de α-hélice e 42% de folhas- β. / Cellulases have attracted an outstanding interest in the recent years because of its ability in the bioconversion of cellulose-containing raw materials into glucose, which can then be converted into ethanol by fermentation. The cellulase complex able to degrade cellulose consists of several enzymes (mainly cellulases and β-glucosidases) and auxiliary proteins, which act in synergism to efficiently solubilize the biomass. In this study, we investigated the enzymatic hydrolysis of pretreated sugarcane bagasse using crude enzyme extracts produced by Trichoderma harzianum as well as from the extract in combination with a commercial cocktail. The influence of different levels of biomass delignification, degree of crystallinity of lignicellulose, composition of enzymatic activities and BSA on enzymatic hydrolysis yields was evaluated. Our X-ray diffraction studies showed that crystallinity of lignocellulose is not a key determinant of its recalcitrance toward enzymatic hydrolysis. In fact, under the experimental conditions, an increase in crystallinity of lignocellulosic samples resulted in increased glucose release by enzymatic hydrolysis. Furthermore, under the same conditions, the addition of BSA had no significant effect on enzymatic hydrolysis. The most efficient enzyme blends were obtained by mixing a commercial enzymatic cocktail with T. harzianum cellulase preparations (above 97%). Increased hydrolytic efficiencies appeared to correlate with having an adequate level of both β-glucosidase and xylanase activities in the blends. Due to its elevated cellulolytic activity, the filamentous fungus T. harzianum has a considerable potential in biomass hydrolysis applications. The cellobiohydrolase I, an exoglucanase, is the main enzyme secreted by this fungus (about 60% of total) and in this study we have expressed, purified and performed an initial biochemical, biophysical and structural characterization. As confirmed by small angle X-ray scattering (SAXS) both full-length CBHI and its catalytic core domain (CCD), obtained by partial digestion with papain, are monomeric in solution and they have Dmax of 110 and 60 Å, and Rg of 20 and 27 Å, respectively. The results indicate that the linker is flexible in solution and confirmed the tadpole shape of the enzyme. CBHI displays maximum activity at pH 5.0 and temperature of 50 °C, with specific activities against Avicel &reg and pNPC of 0,28 and 1.53 U/mg, respectively. Other celulases were also expressed, however, for them we have used the heterologous expression system in Aspergillus niger and Pichia pastoris. The catalytic domain of endoglucanase I from T. harzianum was expressed in A. niger and partially characterized. The protein has specific activity against CMC of 15.8 U/mg and optimum pH and temperature of 3 and 50 °C, respectively. The protein is stable in these conditions until 3 days of incubation. Biophysical studies of termal shift and circular dichroism (CD) assays have showed some parameters of stability of tertiary and secondary structure of the protein. It loses regulary terciary structure in pH 5 around 30 °C but the secondary structure is desordened only in pH 9 at 25 °C. CD experiments also indicated the secondary structure compsition of the catalytic domain of EGLI: 6% de α-helices and 42% de β-sheet.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-21082012-143701
Date02 May 2012
CreatorsViviane Isabel Serpa
ContributorsIgor Polikarpov, Ilana Lopes Baratella da Cunha Camargo, Andrei Leitão, Flávio Henrique da Silva, Richard John Ward
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds