Return to search

Confinamento quântico em hetero-estruturas semicondutoras de baixa dimensionalidade

SILVA, Jusciane da Costa e. Confinamento quântico em hetero-estruturas semicondutoras de baixa dimensionalidade. 2008. 161 f. Tese (Doutorado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2008. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-06-08T19:06:12Z
No. of bitstreams: 1
2008_tese_jcsilva.pdf: 13619378 bytes, checksum: a3f4c7764a488787096097d7d5a0ac01 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-06-08T19:07:00Z (GMT) No. of bitstreams: 1
2008_tese_jcsilva.pdf: 13619378 bytes, checksum: a3f4c7764a488787096097d7d5a0ac01 (MD5) / Made available in DSpace on 2015-06-08T19:07:00Z (GMT). No. of bitstreams: 1
2008_tese_jcsilva.pdf: 13619378 bytes, checksum: a3f4c7764a488787096097d7d5a0ac01 (MD5)
Previous issue date: 2008 / Os materiais semicondutores são responsáveis pelo grande desenvolvimento na indústria eletrônica e surgimento de novas tecnologias. O conceito de hetero-estrutura deu um grande impulso à física do estado sólido. É impossível imaginar a moderna física do estado sólido sem hetero-estruturas semicondutoras. A física de semicondutores está atualmente concentrada no estudo dos chamados sistemas de dimensões reduzidas: poços, fios, pontos e anéis quânticos, assunto de pesquisa de dois terços da comunidade de física de semicondutores. Neste trabalho, investigaremos o confinamento dos portadores e dos excitons em hetero-estruturas de baixas dimensão; poço, ponto e anel quântico. Iniciaremos com o estudo das propriedades excitônicas de poços quânticos Si/Si_{1-x}Ge_x, considerando duas possibilidades para o alinhamento de banda: tipo-I, onde os portadores de cargas, elétron e buraco, estão confinados no mesmo material, e tipo-II, onde os portadores estão espacialmente localizados em materiais diferentes. Usaremos um Hamiltoniano que, na aproximação da massa efetiva, leva em conta a existência de interfaces não abruptas entre os materiais que compõe o sistema. Nos sistemas tipo-I, observamos que a energia do exciton sofre um aumento quando consideramos campos elétricos aplicados. Já em sistemas tipo-II, o campo magnético afeta bem mais o confinamento do elétron do que o do buraco. Investigamos alguns fenômenos nos anéis quânticos, como: impurezas, efeitos geométricos, rugosidade e anéis duplos. Calculamos os níveis de energia do elétron em anéis quânticos considerando um campo magnético perpendicular, levando em conta um modelo realístico, que consiste em anéis com barreiras e potenciais finitos, não limitado a pequenas pertubações. Quando consideramos a presença de uma impureza no anel quântico, há uma quebra de simetria no sistema e consequetemente as oscilações Aharanov-Bohm (AB) são anuladas. Entretanto, para duas impurezas, as oscilações AB são recuperadas se as distâncias entre as impurezas e o plano forem iguais, no caso das impurezas positivas e para impurezas negativas as oscilações são recuperadas independente das posições das impurezas. A existência de interfaces rugosas é responsável por um considerável deslocamento nas energias dos portadores. Além disso, a degenerescência nos pontos de transição do momento angular nas oscilações AB é levantada quando consideramos superfícies rugosas, em casos especiais, as oscilações AB nas energias do estado fundamental pode ser anuladas. Fizemos também um estudo teórico da energia dos portadores em pontos quânticos tipo-I e tipo-II, além de um estudo em pontos quânticos duplos $InGaAs/GaAs$ analisando o efeito de afastamento entre os pontos e considerando dois tipos de acoplamento: lateral e vertical. A equação de Schodinger em três dimensões, na aproximação da massa efetiva, é resolvida para elétrons e buracos a partir de um método de evolução temporal da função de onda. Observamos que as curvas do Stark shift das energias de ligação e total do exciton em pontos quânticos Si/Si_{0.85}Ge_{0.15} tipo-I são assimétricas devido à existência de um dipolo elétrico intrínseco nestes sistemas. No entanto, quando consideramos o efeito de um campo magnético paralelo ao plano, o Stark shift torna-se mais simétrico. No caso dos pontos duplos, vimos que a energia de confinamento do elétron em pontos quânticos acoplados lateralmente, quando consideramos os raios dos pontos iguais, degeneram à medida que a distância entre os pontos aumenta. Entretanto, quando os raios dos pontos são diferentes, essas energias não têm mudanças significativas. Para o caso do acoplamento vertical, o comportamento é semelhante ao dos pontos lado a lado: Para raios iguais em ambos os pontos quânticos, os pares de estados tornam-se degenerados à medida que a distância entre os pontos aumenta, o que não acontece quando consideramos o caso de pontos com raios diferentes.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/12669
Date January 2008
CreatorsSilva, Jusciane da Costa e
ContributorsFreire, José Alexander King de, Farias, Gil de Aquino
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds