This work uses the photonic filtering properties of Fabry-Perot etalons to show improvements in the electrical signals created upon photodetection of the optical signal. First, a method of delay measurement is described which uses multi-heterodyne detection to find correlations in white light signals at 20 km of delay to sub millimeter resolution. By filtering incoming white light with a Fabry-Perot etalon, the pseudo periodic signal is suitable for measurement by combining and photodetecting it with an optical frequency comb. In this way, optical data from a large bandwidth can be downconverted and sampled on low frequency electronics. Second, a high finesse etalon is used as a photonic filter inside an optoelectronic oscillator (OEO). The etalon's narrow filter function allows the OEO loop length to be extremely long for a high oscillator quality factor while still suppressing unwanted modes below the noise floor. The periodic nature of the etalon allows it to be used to generate a wide range of microwave and millimeter wave tones without degradation of the RF signal.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-5778 |
Date | 01 January 2014 |
Creators | Bagnell, Marcus |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0016 seconds