Return to search

Analysis Design and Implementation of Artificial Intelligence Techniques in Edge Computing Environments

Tesis por compendio / [ES] Edge Computing es un modelo de computación emergente basado en acercar el procesamiento a los dispositivos de captura de datos en las infraestructuras Internet of things (IoT). Edge computing mejora, entre otras cosas, los tiempos de respuesta, ahorra anchos de banda, incrementa la seguridad de los servicios y oculta las caídas transitorias de la red. Este paradigma actúa en contraposición a la ejecución de servicios en entornos cloud y es muy útil cuando se desea desarrollar soluciones de inteligencia artificial (AI) que aborden problemas en entornos de desastres naturales, como pueden ser inundaciones, incendios u otros eventos derivados del cambio climático. La cobertura de estos escenarios puede resultar especialmente difícil debido a la escasez de infraestructuras disponibles, lo que a menudo impide un análisis de los datos basado en la nube en tiempo real. Por lo tanto, es fundamental habilitar técnicas de IA que no dependan de sistemas de cómputo externos y que puedan ser embebidas en dispositivos de móviles como vehículos aéreos no tripulados (VANT), para que puedan captar y procesar información que permita inferir posibles situaciones de emergencia y determinar así el curso de acción más adecuado de manera autónoma.

Históricamente, se hacía frente a este tipo de problemas utilizando los VANT como dispositivos de recogida de datos con el fin de, posteriormente, enviar esta información a la nube donde se dispone de servidores capacitados para analizar esta ingente cantidad de información. Este nuevo enfoque pretende realizar todo el procesamiento y la obtención de resultados en el VANT o en un dispositivo local complementario. Esta aproximación permite eliminar la dependencia de un centro de cómputo remoto que añade complejidad a la infraestructura y que no es una opción en escenarios específicos, donde las conexiones inalámbricas no cumplen los requisitos de transferencia de datos o son entornos en los que la información tiene que obtenerse en ese preciso momento, por requisitos de seguridad o inmediatez.

Esta tesis doctoral está compuesta de tres propuestas principales. En primer lugar se plantea un sistema de despegue de enjambres de VANTs basado en el algoritmo de Kuhn Munkres que resuelve el problema de asignación en tiempo polinómico. Nuestra evaluación estudia la complejidad de despegue de grandes enjambres y analiza el coste computacional y de calidad de nuestra propuesta. La segunda propuesta es la definición de una secuencia de procesamiento de imágenes de catástrofes naturales tomadas desde drones basada en Deep learning (DL). El objetivo es reducir el número de imágenes que deben procesar los servicios de emergencias en la catástrofe natural para poder tomar acciones sobre el terreno de una manera más rápida. Por último, se utiliza un conjunto de datos de imágenes obtenidas con VANTs y relativas a diferentes inundaciones, en concreto, de la DANA de 2019, cedidas por el Ayuntamiento de San Javier, ejecutando un modelo DL de segmentación semántica que determina automáticamente las regiones más afectadas por las lluvias (zonas inundadas).

Entre los resultados obtenidos se destacan los siguientes: 1- la mejora drástica del rendimiento del despegue vertical coordinado de una red de VANTs. 2- La propuesta de un modelo no supervisado para la vigilancia de zonas desconocidas representa un avance para la exploración autónoma mediante VANTs. Esto permite una visión global de una zona concreta sin realizar un estudio detallado de la misma. 3- Por último, un modelo de segmentación semántica de las zonas inundadas, desplegado para el procesamiento de imágenes en el VANTs, permite la obtención de datos de inundaciones en tiempo real (respetando la privacidad) para una reconstrucción virtual fidedigna del evento.

Esta tesis ofrece una propuesta para mejorar el despegue coordinado de drones y dotar de capacidad de procesamiento de algoritmos de deep learning a dispositivos edge, más concretamente UAVs autónomos. / [CA] Edge Computing és un model de computació emergent basat a acostar el processament als dispositius de captura de dades en les infraestructures Internet of things (IoT). Edge computing millora, entre altres coses, els temps de resposta, estalvia amplades de banda, incrementa la seguretat dels serveis i oculta les caigudes transitòries de la xarxa. Aquest paradigma actua en contraposició a l'execució de serveis en entorns cloud i és molt útil quan es desitja desenvolupar solucions d'intel·ligència artificial (AI) que aborden problemes en entorns de desastres naturals, com poden ser inundacions, incendis o altres esdeveniments derivats del canvi climàtic. La cobertura d'aquests escenaris pot resultar especialment difícil a causa de l'escassetat d'infraestructures disponibles, la qual cosa sovint impedeix una anàlisi de les dades basat en el núvol en temps real. Per tant, és fonamental habilitar tècniques de IA que no depenguen de sistemes de còmput externs i que puguen ser embegudes en dispositius de mòbils com a vehicles aeris no tripulats (VANT), perquè puguen captar i processar informació per a inferir possibles situacions d'emergència i determinar així el curs d'acció més adequat de manera autònoma.

Històricament, es feia front a aquesta mena de problemes utilitzant els VANT com a dispositius de recollida de dades amb la finalitat de, posteriorment, enviar aquesta informació al núvol on es disposa de servidors capacitats per a analitzar aquesta ingent quantitat d'informació. Aquest nou enfocament pretén realitzar tot el processament i l'obtenció de resultats en el VANT o en un dispositiu local complementari. Aquesta aproximació permet eliminar la dependència d'un centre de còmput remot que afig complexitat a la infraestructura i que no és una opció en escenaris específics, on les connexions sense fils no compleixen els requisits de transferència de dades o són entorns en els quals la informació ha d'obtindre's en aqueix precís moment, per requisits de seguretat o immediatesa.

Aquesta tesi doctoral està composta de tres propostes principals. En primer lloc es planteja un sistema d'enlairament d'eixams de VANTs basat en l'algorisme de Kuhn Munkres que resol el problema d'assignació en temps polinòmic. La nostra avaluació estudia la complexitat d'enlairament de grans eixams i analitza el cost computacional i de qualitat de la nostra proposta. La segona proposta és la definició d'una seqüència de processament d'imatges de catàstrofes naturals preses des de drons basada en Deep learning (DL).L'objectiu és reduir el nombre d'imatges que han de processar els serveis d'emergències en la catàstrofe natural per a poder prendre accions sobre el terreny d'una manera més ràpida. Finalment, s'utilitza un conjunt de dades d'imatges obtingudes amb VANTs i relatives a diferents inundacions, en concret, de la DANA de 2019, cedides per l'Ajuntament de San Javier, executant un model DL de segmentació semàntica que determina automàticament les regions més afectades per les pluges (zones inundades).

Entre els resultats obtinguts es destaquen els següents: 1- la millora dràstica del rendiment de l'enlairament vertical coordinat d'una xarxa de VANTs. 2- La proposta d'un model no supervisat per a la vigilància de zones desconegudes representa un avanç per a l'exploració autònoma mitjançant VANTs. Això permet una visió global d'una zona concreta sense realitzar un estudi detallat d'aquesta. 3- Finalment, un model de segmentació semàntica de les zones inundades, desplegat per al processament d'imatges en el VANTs, permet l'obtenció de dades d'inundacions en temps real (respectant la privacitat) per a una reconstrucció virtual fidedigna de l'esdeveniment. / [EN] Edge Computing is an emerging computing model based on bringing data processing and storage closer to the location needed to improve response times and save bandwidth. This new paradigm acts as opposed to running services in cloud environments and is very useful in developing artificial intelligence (AI) solutions that address problems in natural disaster environments, such as floods, fires, or other events of an adverse nature. Coverage of these scenarios can be particularly challenging due to the lack of available infrastructure, which often precludes real-time cloud-based data analysis. Therefore, it is critical to enable AI techniques that do not rely on external computing systems and can be embedded in mobile devices such as unmanned aerial vehicles (UAVs) so that they can capture and process information to understand their context and determine the appropriate course of action independently.

Historically, this problem was addressed by using UAVs as data collection devices to send this information to the cloud, where servers can process it. This new approach aims to do all the processing and get the results on the UAV or a complementary local device. This approach eliminates the dependency on a remote computing center that adds complexity to the infrastructure and is not an option in specific scenarios where wireless connections do not meet the data transfer requirements. It is also an option in environments where the information has to be obtained at that precise moment due to security or immediacy requirements.

This study consists of three main proposals. First, we propose a UAV swarm takeoff system based on the Kuhn Munkres algorithm that solves the assignment problem in polynomial time. Our evaluation studies the takeoff complexity of large swarms and analyzes our proposal's computational and quality cost. The second proposal is the definition of a Deep learning (DL) based image processing sequence for natural disaster images taken from drones to reduce the number of images processed by the first responders in the natural disaster. Finally, a dataset of images obtained with UAVs and related to different floods is used to run a semantic segmentation DL model that automatically determines the regions most affected by the rains (flooded areas).

The results are 1- The drastic improvement of the performance of the coordinated vertical take-off of a network of UAVs. 2- The proposal of an unsupervised model for the surveillance of unknown areas represents a breakthrough for autonomous exploration by UAVs. This allows a global view of a specific area without performing a detailed study. 3- Finally, a semantic segmentation model of flooded areas, deployed for image processing in the UAV, allows obtaining real-time flood data (respecting privacy) for a reliable virtual reconstruction of the event.

This thesis offers a proposal to improve the coordinated take-off of drones, to provide edge devices with deep learning algorithms processing capacity, more specifically autonomous UAVs, in order to develop services for the surveillance of areas affected by natural disasters such as fire detection, segmentation of flooded areas or detection of people in danger. Thanks to this research, services can be developed that enable the coordination of large arrays of drones and allow image processing without needing additional devices. This flexibility makes our approach a bet for the future and thus provides a development path for anyone interested in deploying an autonomous drone-based surveillance and actuation system. / I would like to acknowledge the project Development of
High-Performance IoT Infrastructures against Climate Change based on
Artificial Intelligence (GLOBALoT). Funded by Ministerio de Ciencia e
Innovación (RTC2019-007159-5), of which this thesis is part. / Hernández Vicente, D. (2023). Analysis Design and Implementation of Artificial Intelligence Techniques in Edge Computing Environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192605 / Compendio

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/192605
Date27 March 2023
CreatorsHernández Vicente, Daniel
ContributorsCecilia Canales, José María, Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors, Agencia Estatal de Investigación
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageEnglish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess
Relationinfo:eu-repo/grantAgreement/AGENCIA ESTATAL DE INVESTIGACION//RTC2019-007159-5//DESARROLLO DE INFRAESTRUCTURAS IOT DE ALTAS PRESTACIONES CONTRA EL CAMBIO CLIMÁTICO BASADAS EN INTELIGENCIA ARTIFICIAL/

Page generated in 0.0045 seconds