Les progrès des technologies de la micro-électronique ont permis d'embarquer des circuits numériques dans des objets multiples et divers (téléphones, GPS, automobiles, etc.) dont ils ont enrichi les fonctionnalités et amélioré les performances à moindre coût. Conjointement, l'essor rapide et constant de ces applications a amené des contraintes de conception sans précédent (contraintes de coût, de performance, de consommation, etc.). Dans ce contexte, l'émergence des architectures reconfigurables à grain épais a ouvert la voie à de nouveaux compromis entre performances et flexibilité. À ce jour, la mise en oeuvre des mécanismes de reconfiguration matérielle a principalement concerné les aspects calculatoires de ces architectures. Or, les applications embarquées (multimédia) manipulent des volumes de données croissants, engendrant une sollicitation intensive des ressources de mémorisation. En outre, l'hétérogénéité et l'évolutivité des traitements induits ne permet plus d'envisager l'élaboration de solutions de stockage dédiées dans un objectif de performance et de maîtrise de la consommation. Aussi, dans le cadre de cette thèse, nous avons développé le modèle RTL, valide et fonctionnel, d'une architecture reconfigurable que nous avons nommé MOREA (acronyme de Memory-Oriented Reconfigurable Embedded Architecture) et dont la structure mémoire est flexible. Celle-ci est organisée en un pavage de tuiles de traitement et de stockage qui supportent les processus d'une application. Au sein d'une tuile, les tâches du processus sont exécutées par quatre clusters qui intègrent des ressources mémoire et de calcul. Ces clusters communiquent entre eux et avec une mémoire de tuile, contenant les données partagées par les tâches du processus, grâce à une interconnexion flexible de type crossbar. Dès lors, cette structure permet de minimiser les mouvements de données au sein de MOREA et notamment le nombre d'accès mémoire et donc d'en atténuer l'impact sur la puissance de calcul et la dissipation énergétique du système. De plus, les gains obtenus sont maximisés grâce à une unité de génération d'adresses programmable dont l'architecture a été définie en fonction des caractéristiques des applications de traitement du signal et de l'image. Celle-ci intègre notamment un accélérateur matériel pour la génération de séquences d'adresses régulières. Cette architecture permet dès lors, comparativement à une solution programmable classique, d'améliorer significativement les performances de l'unité de génération d'adresses, d'un facteur 6 en terme de Millions d'Adresses générées Par Seconde (MAPS), tout en réduisant drastiquement sa consommation d'énergie de 96%.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00554158 |
Date | 22 October 2010 |
Creators | Graces, Erwan |
Publisher | Université Rennes 1 |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds