Document classification is used to sort and label documents. This gives users quicker access to relevant data. Users that work with large inflow of documents spend time filing and categorizing them to allow for easier procurement. The Automatic Classification and Document Filing (ACDF) system proposed here is designed to allow users working with files or documents to rely on the system to classify and store them with little manual attention. By using a system built on Hidden Markov Models, the documents in a smaller desktop environment are categorized with better results than the traditional Naive Bayes implementation of classification.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-1723 |
Date | 01 January 2012 |
Creators | McElroy, Jonathan David |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.0018 seconds