At the start of the 21st century, the topic of complexity remains a formidable challenge in engineering, science and other aspects of our world. It seems that when disaster strikes it is because some complex and unforeseen interaction causes the unfortunate outcome. Why did the financial system of the world meltdown in 2008-2009? Why are global temperatures on the rise? These questions and other ones like them are difficult to answer because they pertain to contexts that require lengthy descriptions. In other words, these contexts are complex.
But we as human beings are able to observe and recognize this thing we call 'complexity'. Furthermore, we recognize that there are certain elements of a context that form a system of complex interactions - i.e., a complex system. Many researchers have even noted similarities between seemingly disparate complex systems. Do sub-atomic systems bear resemblance to weather patterns? Or do human-based economic systems bear resemblance to macroscopic flows? Where do we draw the line in their resemblance? These are the kinds of questions that are asked in complex systems research.
And the ability to recognize complexity is not only limited to analytic research. Rather, there are many known examples of humans who, not only observe and recognize but also, operate complex systems. How do they do it? Is there something superhuman about these people or is there something common to human anatomy that makes it possible to fly a plane? - Or to drive a bus? Or to operate a nuclear power plant? Or to play Chopin's etudes on the piano? In each of these examples, a human being operates a complex system of machinery, whether it is a plane, a bus, a nuclear power plant or a piano. What is the common thread running through these abilities?
The study of situational awareness (SA) examines how people do these types of remarkable feats. It is not a bottom-up science though because it relies on finding general principles running through a host of varied human activities. Nevertheless, since it is not constrained by computational details, the study of situational awareness provides a unique opportunity to approach complex tasks of operation from an analytical perspective. In other words, with SA, we get to see how humans observe, recognize and react to complex systems on which they exert some control.
Reconciling this perspective on complexity with complex systems research, it might be possible to further our understanding of complex phenomena if we can probe the anatomical mechanisms by which we, as humans, do it naturally. At this unique intersection of two disciplines, a hybrid approach is needed. So in this work, we propose just such an approach.
In particular, this research proposes a computational approach to the situational awareness (SA) of complex systems. Here we propose to implement certain aspects of situational awareness via a biologically-inspired machine-learning technique called Hierarchical Temporal Memory (HTM). In doing so, we will use either simulated or actual data to create and to test computational implementations of situational awareness. This will be tested in two example contexts, one being more complex than the other. The ultimate goal of this research is to demonstrate a possible approach to analyzing and understanding complex systems. By using HTM and carefully developing techniques to analyze the SA formed from data, it is believed that this goal can be obtained.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33955 |
Date | 06 April 2010 |
Creators | Sherwin, Jason |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0019 seconds