Return to search

Steigerung der Effizienz Hierarchischer Matrizen durch Verwendung gemeinsamer Basen

Viele physikalische Probleme führen zu Randwertproblemen. Dabei gilt es die Lösung einer Dfferentialgleichung zu finden, so dass auf dem Rand vorgegebene Funktionswerte, die so genannten Randbedingungen, angenommen werden. Differentialgleichungen können nur in wenigen Spezialfällen analytisch gelöst werden. Man muss also auf numerische Verfahren zurückgreifen. Ein Problem aus der Praxis ist in der Regel von zu hoher Komplexität. Wir können daher nicht davon ausgehen ein Black-Box-Verfahren zu finden, welches jede Dfferentialgleichung innerhalb akzeptabler Zeit löst. Deshalb brauchen wir auf die Problemklassen zugeschnittene Verfahren, welche ihre speziellen Eigenschaften ausnutzen. Wir beschränken uns hier auf elliptische Randwertprobleme. Sie werden zu Integralgleichungen umformuliert, mittels Randelementmethode diskretisiert und damit in ein lineares Gleichungssystem überführt. Zur Behandlung des Gleichungssystems bedienen wir uns Hierarchischer Matrizen. Obwohl diese bereits effektive Hilfsmittel darstellen, wollen wir versuchen ihre Effzienz durch Verwendung gemeinsamer Basen weiter zu steigern.
I

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:16513
Date20 October 2017
CreatorsBujack, Roxana
ContributorsBebendorf, Mario, Universität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:15-qucosa2-163403, qucosa:16340

Page generated in 0.0018 seconds