Poröse Kohlenstoffmaterialien zeichnen sich durch hohe spezifische Oberflächen und Porenvolumina, eine gute elektrische Leitfähigkeit sowie hohe mechanische und chemische Stabilität aus. Sie werden in Anwendungen wie der Gasspeicherung oder der elektrochemischen Energiespeicherung eingesetzt. Besondere Aufmerksamkeit erfährt momentan die Energiespeicherung, unter anderem durch die fortschreitende Verbreitung der Elektromobilität. Als besonders effizient haben sich elektrochemische Energiespeichermaterialien, zum Beispiel für Doppelschichtkondensatoren (EDLCs) und Batterien, herausgestellt. Ein vielversprechendes Batteriesystem ist die Lithium-Schwefel-Batterie (LiS-Batterie). Mit diesem System können wesentlich höhere gravimetrische Energiedichten als mit Lithium-Ionen-Batterien erreicht werden.
Poröser Kohlenstoff stellt aufgrund der hohen Porosität, der guten elektrischen Leitfähigkeit und der chemischen Beständigkeit ein ideales Elektrodenmaterial für die Anwendung sowohl in EDLCs als auch in LiS-Batterien dar. Bei den im industriellen Maßstab am häufigsten eingesetzten Aktivkohlen ist nachteilig, dass während der Synthese nur begrenzte Kontrolle über das Porensystem vorhanden ist. Zudem sind die Poren oft flaschenhalsartig, was zu einer schlechten Zugänglichkeit des Porensystems führt und dadurch den Stofftransport limitiert. Eine verbesserte Kontrolle über das Porennetzwerk bieten das Templatverfahren oder die Synthese von Kohlenstoffen aus Carbiden. Diese Methoden ermöglichen es zudem, Poren unterschiedlicher Größe, das heißt, ein hierarchisches Porensystem, einzubringen. Dies ist vorteilhaft für Prozesse, in denen sowohl eine hohe Adsorptionskapazität als auch ein schneller Stofftransport notwendig sind. Die meisten dieser Synthesen haben die Nachteile, dass sie komplex sind und viel Abfall produzieren. Eine vergleichbar neue Methode zur Herstellung von hierarchischen Kohlenstoffen ist die Synthese von Kroll-Kohlenstoffen über eine reduktive Carbochlorierung. Dieses Verfahren ist dem Schlüsselschritt des Kroll-Prozesses zur Herstellung von Titan nachempfunden. Dafür werden oxidische Nanopartikel mit Kohlenstoff beschichtet und durch Behandlung mit heißem Chlorgas in Kohlenstoff überführt. Diese Synthese ermöglicht neben der Kontrolle der Mesoporengröße über die Größe der Nanopartikel gleichzeitig die Einbringung von Mikroporen durch das Ätzen von Kohlenstoff während der Carbochlorierung, sodass in wenigen Syntheseschritten ein hierarchisches Porensystem generiert werden kann.
In dieser Arbeit wurde untersucht, ob sich der Ansatz der Carbochlorierung auf weitere Systeme übertragen lässt. Durch postsynthetische Aktivierung wurde die Porosität von Kroll-Kohlenstoff unter Erhalt der Porenstruktur gesteigert. So war es möglich, Kohlenstoffe mit spezifischen Oberflächen von mehr als 2700 m²/g und Porenvolumina von 3 cm³/g zu synthetisieren. Die Mesoporenstruktur konnte aufrechterhalten werden, während sowohl der Anteil von Meso- als auch Mikroporen erhöht werden konnte. Aktivierter Kroll-Kohlenstoff wurde in EDLCs als Elektrodenmaterial untersucht. Mit 1 M Schwefelsäure als Elektrolyt konnten spezifische Kapazitäten von 160 F/g über galvanostatische Lade-/Entlademessungen erreicht werden, wobei bei hohen Lade-/Entladeströmen von 10 A/g noch 87 % der Maximalkapazität abgerufen werden konnten.
Weiterhin wurde der Frage nachgegangen, ob mittels Carbochlorierung geordnete mesoporöse Kohlenstoffe synthetisiert werden können. Dafür wurden sowohl Harttemplat- als auch Weichtemplatmethoden eingesetzt. Im Harttemplatverfahren war es möglich, geordneten mesoporösen Kohlenstoff DUT-118 zu synthetisieren.7 DUT-118 weist eine höhere spezifische Oberfläche und ein höheres Porenvolumen im Vergleich zu Kohlenstoff auf, der über das klassische „Nanocasting“ hergestellt wird. Durch die Carbochlorierung kann zudem der Mikroporenanteil des Materials im Vergleich zur klassischen Templatentfernung gesteigert werden, was durch Präadsorptionsexperimente mit n-Nonan nachgewiesen wurde. In einer weichtemplatgestützten Synthese konnte geordneter mesoporöser Kohlenstoff DUT-119 aus Oxid/Kohlenstoff-Kompositen mittels Carbochlorierung synthetisiert werden. DUT-119 verfügt über eine spezifische Oberfläche von über 2200 m²/g, ein Porenvolumen von mehr als 2 cm³/g und ein hierarchisches Porensystem. Aufgrund des hierarchischen Mikro-/Mesoporensystems ist DUT-119 hervorragend als Kathodenmatrix in LiS-Batterien geeignet. Besonders hervorzuheben ist die geringe Menge an eingesetztem Elektrolyt von nur 5 μL/mgSchwefel. Die gefertigte Zelle ist über 50 Zyklen stabil und verfügt über eine herausragende Flächenkapazität von 3,7 mAh/cm² nach 50 Zyklen.
Verstärkt im Fokus der Forschung stehen Kohlenstoffe, welche mit Heteroatomen dotiert sind. Durch Dotierung können die Eigenschaften der Kohlenstoffe hinsichtlich Polarität oder elektrochemischer Eigenschaften optimiert werden.8,9 Deshalb wurde untersucht, ob über die Carbochlorierung stickstoffdotierter Kohlenstoff synthetisiert werden kann. Dafür wurde ein metallorganisches Netzwerk (MOF) zu Kroll-Kohlenstoff DUT-127 umgesetzt. In Abhängigkeit von der Synthesetemperatur von 600–900 °C konnten spezifische Oberflächen von 1450–2750 m²/g und Porenvolumina zwischen 0,8 und 2 cm³/g erreicht werden. Da das eingesetzte MOF Aminogruppen enthielt, sind in DUT-127 Stickstoffdotierungen vorhanden, was zu einer verringerten Hydrophobie führt. DUT-127 wurde als Elektrodenmaterial in EDLCs eingesetzt. Mit 1 M Schwefelsäure konnten spezifische Kapazitäten von 165 F/g, ermittelt über galvanostatische Lade-/Entlademessungen, erreicht werden. Besonders bei hohen Lade-/Entladeströmen von 12,5 A/g konnten über 90 % der maximalen Kapazität abgerufen werden. Weiterhin ist die hohe Arbeitsfrequenz von über 25 Hz hervorzuheben. Beides wird durch die gute Benetzbarkeit, das ausgeprägte Transportporensystem sowie die geringe Partikelgröße ermöglicht. Der große Vorteil der Synthese von Kroll-Kohlenstoffen über die Carbochlorierung ist der Verzicht auf Lösemittel während der Templatentfernung. Wünschenswert ist es, zukünftig ebenfalls die Synthese der Präkursoren und Template möglichst lösemittelfrei zu gestalten.
Die Porenstruktur (Textur) eines porösen Materials bestimmt in großem Maße die Leistungsfähigkeit in einer bestimmten Anwendung. Deshalb wird der exakten Charakterisierung des Porensystems viel Aufmerksamkeit gewidmet. Neben Methoden wie der Gasadsorption sind bildgebende Verfahren ein wichtiges Hilfsmittel, um Informationen über Porengröße, -geometrie und -konnektivität zu erhalten. In einem ersten „Proof of Concept“ wurden die Porensysteme nanoporöser Materialien mit definierter Porenstruktur durch Röntgenmikroskopie untersucht. Dabei konnten Poren bis zu einer Größe von etwa 60 nm aufgelöst werden. Weiterhin war es möglich, aus den aufgenommenen Bilderserien Rekonstruktionen zu erstellen, wodurch Einblicke in das Innere des Partikels möglich wurden. Für die erfolgreiche Rekonstruktion einer Bilderserie ist es notwendig, dass diese optimal ausgerichtet ist. Aufgrund der hohen Uniformität der untersuchten Proben ist dies ein anspruchsvoller Prozess, der noch weiter optimiert werden muss. Dadurch könnten weitere Einblicke in die untersuchten Proben, beispielsweise durch eine quantitative Diskussion der Porosität, gewonnen werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30406 |
Date | 27 June 2017 |
Creators | Leifert, Winfried |
Contributors | Kaskel, Stefan, Brunner, Eike, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds