Return to search

Microstructure Evolution and Mechanical Response of Material by Friction Stir Processing and Modeling

In this study, we have investigated the relationship between the process-microstructure to predict and modify the material's properties. Understanding these relationships allows the identification and correction of processing deficiencies when the desired properties are not achieved, depending on the microstructure. Hence, the co-relation between process-microstructure-properties helped reduce the number of experiments, materials & tool costs and saved much time. In the case of high entropy alloys, friction stir welding (FSW) causes improved strength due to the formation of fine grain structure and phase transformation from f.c.c to h.c.p. The phase transformation is temperature sensitive and is studied with the help of differential scanning calorimetry (DSC) to calculate the enthalpy experimentally to obtain ΔGγ→ε. The second process discussed is heat treatment causing precipitation evolution. Fundamental investigations aided in understanding the influence of strengthening precipitates on mechanical properties due to the aging kinetics – solid solution and variable artificial aging temperature and time. Finally, in the third case, the effect of FSW parameters causes the thermal profile to be generated, which significantly influences the final microstructure and weld properties. Therefore, a computational model using COMSOL Multiphysics and TC-Prisma is developed to generate the thermal profile for different weld parameters to understand its effect on the microstructure, which would eventually affect and predict the final properties of the weld. The model's validation is done via DSC, TEM, and mechanical testing.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc1987120
Date08 1900
CreatorsGupta, Sanya
ContributorsMishra, Rajiv S, Doherty, Kevin J, Banerjee, Rajarshi, Mukherjee, Sundeep, Du, Jincheng
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Gupta, Sanya, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.003 seconds