Structure-tribological property relations have been studied for five high entropy alloys (HEAs). Microhardness, room and elevated (100°C and 300°C) temperature sliding friction coefficients and wear rates were determined for five HEAs: Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4; Co Cr Fe Ni Al0.25 Ti0.75; Ti V Nb Cr Al; Al0.3CoCrFeNi; and Al0.3CuCrFeNi2. Wear surfaces were characterized with scanning electron microscopy and micro-Raman spectroscopy to determine the wear mechanisms and tribochemical phases, respectively. It was determined that the two HEAs Co0.5 Cr Cu0.5 Fe Ni1.5 Al Ti0.4 and Ti V Nb Cr Al exhibit an excellent balance of high hardness, low friction coefficients and wear rates compared to 440C stainless steel, a currently used bearing steel. This was attributed to their more ductile body centered cubic (BCC) solid solution phase along with the formation of tribochemical Cr oxide and Nb oxide phases, respectively, in the wear surfaces. This study provides guidelines for fabricating novel, low-friction, and wear-resistant HEAs for potential use at room and elevated temperatures, which will help reduce energy and material losses in friction and wear applications.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc955078 |
Date | 12 1900 |
Creators | Kadhim, Dheyaa |
Contributors | Scharf, Thomas W., Banerjee, Rajarshi, Mukherjee, Sundeep |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Kadhim, Dheyaa, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0023 seconds