Return to search

Effect of Dietary Protein Intake on Body Composition Changes During Intense Training in an Energy Deficit

<p>What a ride it has been. The ups and downs of the McMaster graduate program has been a sweet one. It has been a pleasure working with the Exercise Metabolism Research Group for the past 2 years, and I will miss being around the work that goes on in the trenches around the lab. I have leaned on many people for all types of guidance through this journey, and would like to thank everyone for their unprecedented support. I have grown as a person and student and will use everything I have learned at this fine establishment I’m sure at one point or another along the great path of life. I must thank my amazing parents, family, friends and of coarse Ashley for putting up with my work ethic throughout my studies; the long days that I would go missing. Without their support none of this would have been possible. I have to specially mention Melanie Wolfe for recommending myself, and ultimately Stu Phillips for presenting this opportunity that is coming to a close. I have had great senior support from Cam Mitchell, Tyler Churchward-Venne, Todd Prior and Michaela Devries in putting this document together, and would not be submitting this without their selfless assistance. It’s been a journey getting to this point, but I wouldn’t change it for the world, to the next chapter in life, cheers and God Bless.</p> / <p>Higher dietary protein intake, greater than the Recommended Dietary Allowance (RDA; 0.8 g protein/kg/d), coupled with resistive exercise has been shown to aid in preservation of muscle mass during hypocaloric diet-induced weight loss. We examined the impact of dietary protein supplementation at two levels (1.2 and 2.4 g/kg/d) on body composition during a 4wk hypocaloric dietary intervention that included 6d/wk of high intensity resistance exercise and interval training. In a single blind study, forty young men consumed 33±1.1 kcal/LBM (~40% reduction versus estimated energy requirements), and were randomly assigned to a group that consumed either 1.2g/kg/d protein or 2.4g/kg/d. Body composition was determined using DXA, Bod Pod, and Bio-impedance pre- and post-intervention to derive a 4-compartment model for body composition. Both groups retained lean mass (LM), but retention was greater in the higher protein group (p</p> / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/15355
Date27 May 2015
CreatorsLongland, Thomas M.
ContributorsPhillips, Stuart M, Gibala, Martin, Bray, Steven, Kinesiology
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0022 seconds