Return to search

The Effect of Exopolysaccharide-producing <em>Streptococcus thermophilus</em> MR1C on Functionality in High Moisture Cheddar-type Cheese

Differences in texture at any particular stage of ripening depend upon differences in the basic structure and the extent to which the basic structure is modified by physical parameters. Thus, very young cheeses of the same variety differ in texture because of variations in pH and in salt, moisture, and fat content. How well a cheese melts and shreds depend on its texture and physical parameters. Streptococcus thermophilus MR1C produces an exopolysaccharide (EPS) that is tightly associated with the bacterial cell wall. Addition of S. thermophilus MR1C to the cheese make will increase the moisture of the cheese 2-3% and thus affect the texture, melt, and shreddability of that cheese.
To determine the effect of S. thermophilus MR1C on the texture, melt, and shreddability of cheese, two stirred-curd cheeses with equivalent physical parameters using BPS-producing S. thermophilus MR1C or non-BPS-producing S. thermophilus DM10 adjunct cultures were produced. Because MR1C cheese would increase moisture, the curd size, wash water temperature, and pH at salting had to be altered in order to make the physical parameters the same for both cheeses.
The MR1C cheese was harder and had a higher fracture stress than the DM10 cheese. The MRlC cheese was also more adhesive, but only for one of the two trials. Even with adjustments in the method of manufacture, the MR1C cheese still had a slightly higher SM and pH, which may be partly responsible for the differences between the two cheeses. There were no differences between the MRlC cheese and the DM1 0 cheese in shreddability as determined by fines, stickiness, and gumminess. Cheese produced without a streptoccus adjunct culture was more cohesive and had fewer fines than the MRIC or DM10 cheese.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6595
Date01 May 2007
CreatorsSingleton, Tyler J.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0021 seconds