Return to search

Improved energy efficiency in double disc chip refining

The electrical energy consumption in thermomechanical pulping (TMP) is very high, in the range of 2 – 3 MWh/adt depending on process solution and on the product quality specifications for the paper product. Both pulpwood and energy prices have increased rapidly for some time. Due to this, the main focus of the research and development is on ways to reduce the electrical energy consumption in wood chip refining. As a step towards a more energy and cost ‐ effective refining process, Holmen Paper AB has invested in a new mechanical pulping process at its Braviken mill. In this case the primary refining stage consists of high consistency (HC) double disc refiners ‐ RGP68DD (machines with two counter rotating discs). Earlier studies on the refining conditions, such as intensity and temperature, have indicated that it should be possible to improve the energy efficiency in double disc refining while maintaining the functional pulp properties such as tensile index. The main goal of this project was to improve the energy efficiency in double disc chip refining with 150 kWh/adt to corresponding pulp properties as measured on pulp samples after refiner. In order to further improve the basic understanding of what happens to the wood fibre material when changing the process conditions, the morphological and ultrastructural changes of fibres were also studied. This part of the research work was performed in cooperation with the research program; Collaborative Research on the Ultrastructure of Wood Fibres (CRUW). This licentiate project is a part of a large development project where different techniques to improve the energy efficiency has been evaluated by means of mill scale trials at the Holmen Paper Braviken Mill. The high consistency double disc chip refining part of the project was financed by The Swedish Knowledge Foundation, Metso Paper and Holmen Paper, in cooperation with FSCN (Fiber Science & Communication Network) at Mid Sweden University. The trials were made on one of the TMP lines at the Holmen Paper Braviken mill with Norway spruce as raw material. The influence of increased specific      refining energy on pulp properties were studied at different refining temperatures, refining intensity, pulp consistency and production rate. Results from these trials were later validated by means of long term trials. Intensity models and simulations for intensity changes by new segment design were made by Juha‐ Pekka Huhtanen from Tampere University of Technology, Finland. The results show that the specific energy consumption to same tensile index can be improved by means of increasing the refining pressure/temperature. The energy efficiency was improved by 80     ‐150 kWh/adt depending on load and the inlet‐ and housing pressure. The largest relative specific energy efficiency improvement was reached at low specific energy consumption levels. Similar fibre surface ultrastructure characteristics are gained by pulps with high pressure/temperature and low specific energy consumption compared to low pressure/temperature and high specific energy consumption pulps. High pressure/temperature and high specific energy consumption resulted in significantly increase in the delamination/internal fibrillation of pulp fibres. The surface ultrastructure of these fibres exhibited exposed S2 layer with long ribbontype fibrillation compared to pulps produced with lower temperature and lower specific energy consumption. When the refiner was operated at high pressure, the tensile index was preserved over the whole plate life. The specific light scattering coefficient increased with increasing pressure/temperature. A reason for this could be increased intensity caused by decreased plate gap. Increased intensity by means of refiner segment design changes resulted in large specific light scattering coefficient increase at similar tensile index, lower shives content, lower average fibre length and lower CSF at same specific energy consumption. The fresh steam consumption was reduced by the increased refiner ressure/temperature. / Den höga elenergiförbrukningen vid produktion av mekanisk massa har ställtkrav på mer forskning för att elenergieffektivisera raffineringsprocessen. Som ettsteg mot en mer energi‐ och kostnadseffektiv raffineringsprocess, har HolmenPaper AB investerat i en ny tillverkning av termomekanisk (TMP) massa vidBravikens pappersbruk. Dubbeldiskraffinörerna i den nya massalinjens primäraraffineringssteget studerades i detta projekt. Det finns goda indikationer på att enminskning av energiförbrukningen är möjlig genom att studerar och optimeraraffineringparametrar såsom intensitet och temperatur. Projektets huvudmål varatt energieffektivisera det primära dubbeldiskraffineringssteget med 150 kWh/adttill motsvarande massaegenskaper, så som dragstyrka, mätt på massa efterraffinör. Tillfälle gavs också till att studera morfologiska förändringar på fibrer föratt ytterligare förstå hur massa och fibrerna påverkas av dubbeldiskraffinering ochförändringar i raffineringssystemet.Detta licentiatprojekt är en del av ett större projekt där olika tekniker för attförbättra energieffektiviteten har utvärderats i industriell skala på Holmen PaperBravikens pappersbruk. Licentiatprojektet är finansierat av KK‐stiftelsen, MetsoPaper och Holmen Paper, i samarbete med Mittuniversitetet.Fullskaleförsök gjordes på en av TMP linjerna vid Bravikens pappersbruk, därgran används som råvara. Studien utfördes på dubbeldiskraffinörerna i detprimära raffineringssteget. Malkurvor, med ökande specifik raffineringsenergi,gjordes vid olika raffineringstemperaturer, intensitet, massakoncentration ochproduktion. Resultat som erhållits från malkurvorna bekräftades med längrestudier på raffinörerna. Intensitetsmodeller och simuleringar utfördes av Juha‐Pekka Huhtanen från Tampere University of Technology.De erhållna resultaten visar på att energiförbrukningen till ett visst dragindexkan minskas genom att öka raffineringstrycket/temperaturen. Medraffineringstryck menas inlopp och hustryck i raffinören. Energibesparingen är iintervallet 80‐150 kWh/adt. Den största förbättringen kan uppnås vid lågaenergiinsatser. Massor producerade med högt tryck och temperatur och lägrespecifik energiförbrukning uppvisar liknande ultrastrukturella ytegenskaper sommassor producerade med lågt tryck och temperatur och hög specifik energi. Högttryck och temperaturer med hög specifik energiinsats gav en signifikant förbättringav delaminering/intern fibrillering av massafibrer. Dessa fibrer uppvisadebildningar av långa band‐liknande fibriller från fibrernas S2 skikt, i jämförelse medmassor tillverkade med lägre tryck och temperatur och lägre specifik energi.5Om raffineringen genomförs vid högt tryck/temperatur bevaras dragindexunder hela segmentlivslängden.Den specifika ljusspridningskoefficienten påverkades positivt av ökat tryck ochtemperatur. En orsak till detta kan vara högre intensitet som orsakas av minskadmalspalt.Ökad intensitet genom förändrad segmentdesign leder till stora ökningar i denspecifika ljusspridningskoefficienten. Samtidigt uppnås samma dragindex, lägrespethalt, lägre genomsnittlig fiberlängd och CSF vid samma specifikaenergiförbrukning.Förbrukningen av färskångan sänktes vid tillämning av högre tryck ochtemperatur i raffinören.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-12979
Date January 2010
CreatorsMuhic, Dino
PublisherMittuniversitetet, Institutionen för naturvetenskap, teknik och matematik, Sundsvall : Mittuniversitetet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMid Sweden University licentiate thesis, 1652-8948 ; 46

Page generated in 0.0031 seconds