The topic of this dissertation lies at the interface between the areas of Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory, with an emphasis on the study of singular integral operators associated with second and higher order elliptic boundary value problems in non-smooth domains.
The overall aim of this work is to further the development of a systematic treatment of second and higher order elliptic boundary value problems using singular integral operators. This is relevant to the theoretical and numerical treatment of boundary value problems arising in the modeling of physical phenomena such as elasticity, incompressible viscous fluid flow, electromagnetism, anisotropic plate bending, etc., in domains which may exhibit singularities at all boundary locations and all scales. Since physical domains may exhibit asperities and irregularities of a very intricate nature, we wish to develop tools and carry out such an analysis in a very general class of non-smooth domains, which is in the nature of best possible from the geometric measure theoretic point of view.
The dissertation will be focused on three main, interconnected, themes: A. A systematic study of the poly-Cauchy operator in uniformly rectifiable domains in $\mathbb{C}$;
B. Solvability results for the Neumann problem for the bi-Laplacian in infinite sectors in ${\mathbb{R}}^2$;
C. Connections between spectral properties of layer potentials associated with second-order elliptic systems and the underlying tensor of coefficients.
Theme A is based on papers [16, 17, 18] and this work is concerned with the investigation of polyanalytic functions and boundary value problems associated with (integer) powers of the Cauchy-Riemann operator in uniformly rectifiable domains in the complex plane. The goal here is to devise a higher-order analogue of the existing theory for the classical Cauchy operator in which the salient role of the Cauchy-Riemann operator $\overline{\partial}$ is now played by $\overline{\partial}^m$ for some arbitrary fixed integer $m\in{\mathbb{N}}$. This analysis includes integral representation formulas, higher-order Fatou theorems, Calderón-Zygmund theory for the poly-Cauchy operators, radiation conditions, and higher-order Hardy spaces.
Theme B is based on papers [3, 19] and this regards the Neumann problem for the bi-Laplacian with $L^p$ data in infinite sectors in the plane using Mellin transform techniques, for $p\in(1,\infty)$. We reduce the problem of finding the solvability range of the integrability exponent $p$ for the $L^{p}$ biharmonic Neumann problem to solving an equation involving quadratic polynomials and trigonometric functions employing the Mellin transform technique. Additionally, we provide the range of the integrability exponent for the existence of a solution to the $L^{p}$ biharmonic Neumann problem in two-dimensional infinite sectors. The difficulty we are overcoming has to do with the fact that the Mellin symbol involves hypergeometric functions.
Finally regarding theme C, based on the ongoing work in [2], the emphasis is the investigation of coefficient tensors associated with second-order elliptic operators in two dimensional infinite sectors and properties of the corresponding singular integral operators, employing Mellin transform. Concretely, we explore the relationship between distinguished coefficient tensors and $L^{p}$ spectral and Hardy kernel properties of the associated singular integral operators. / Mathematics
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/10337 |
Date | 05 1900 |
Creators | Kyeong, Jeongsu, 0000-0002-4627-3755 |
Contributors | Mitrea, Irina, Gutiérrez, Cristian E., 1950-, Ignatova, Mihaela, Moskow, Shari |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 252 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/10299, Theses and Dissertations |
Page generated in 0.0027 seconds