Return to search

On the number of SRB measures for Surface Endomorphisms / Sobre números das medidas SRB para endomorfismos da superfície

Let f be a C2 local diffeomorphism, of a closed surface M without zero Lyapunov exponents. We have proved that the number of ergodic hyperbolic measures of f with SRB property is less than equal to the number of homoclinic equivalence classes. We use an adaptation of Katok closing lemma for endomorphisms and prove ergodic criterion, introduced in [HHTU], for endomorphisms. We also prove some folklore results on uniqueness of SRB measures, in the presence of topological transitivity / Seja f um endomorfismo C2 non-singular (difeomorfismo local), de uma superfície fechada M e µ uma medida probabilidade Borel f-invariante e ergódica com expoentes de Lyapunov Não nulo. Nós provamos que o número de medidas hiperbólicas com propriedade SRB é para f so menor ou igual ao número de classes equivalentes homoclínicos. Usamos uma adaptaão do closing lema de Katok por endomorfismos e provamos critrio ergódico, introduzido em [HHTU], para endomorfismos. Também provamos alguns resultados folclóricos em unicidade de medidas SRB, na presena de transitividade topológica vii

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-30092014-101422
Date16 July 2014
CreatorsPouya Mehdipour Balagafsheh
ContributorsAli Tahzibi, Nils Martin Andersson, Krerley Irraciel Martins Oliveira, Paulo César Rodrigues Pinto Varandas
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds