Return to search

Human Activity Recognition By Gait Analysis

This thesis analyzes the human action recognition problem. Human actions are modeled as a time evolving temporal texture. Gabor filters, which are proved to be a robust 2D texture representation tool by detecting spatial points with high variation, is extended to 3D domain to capture motion texture features. A well known filtering algorithm and a recent unsupervised clustering algorithm, the Genetic Chromodynamics, are combined to select salient spatio-temporal features of the temporal texture and to segment the activity sequence into temporal texture primitives. Each activity sequence is represented as a composition of temporal texture primitives with its salient spatio-temporal features, which are also the symbols of our codebook. To overcome temporal variation between different performances of the same action, a Profile Hidden Markov Model is applied with Viterbi Path Counting (ensemble training). Not only parameters and structure but also codebook is learned during training.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12613089/index.pdf
Date01 February 2011
CreatorsKepenekci, Burcu
ContributorsAkar, Gozde
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypePh.D. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0016 seconds