Return to search

Stability of microbial transglutaminase and its reactions with individual caseins under atmospheric and high pressure

Kinetic inactivation of factor XIIIa and MTG were performed in a pressure range from 0.1 to 400 MPa at 40°C within a time from 0 to 60 min in a TRIS-acetate buffer at pH 6.0. The inactivation of both enzymes at these conditions followed a first order reaction model. The high inactivation rate constant of 26.6 x10-3/min-1 for factor XIIIa at low pressure (50 MP) indicated that this enzyme is much easier to inactivate than MTG, which achieved an inactivation rate constant value of 9.7 x10-3/min at higher pressure (200 MPa). An inactivation volume of –10.17±0.5 cm3/mol confirmed that MTG is very stable under high pressure. The stability of MTG under high pressure and thermal treatment was related to its conformational changes. Enzyme inactivation was accompanied by secondary and tertiary structure changes until an irreversible protein precipitation is achieved. The tertiary structure, represented by circular dichroism spectra in the aromatic region showed differences among native and MTG samples treated under high pressure, as well as at elevated temperature. Tyrosine bands, indicating protein unfolding, increased proportionally with increasing pressure treatment above 400 MPa. Nevertheless, compared to pressure, a maximal enhancement could be observed after thermal treatment at 0.1 MPa at 80°C. That demonstrated the exposure of hydrophobic groups to the protein surface with a concomitant protein unfolding. The spectra in the far ultraviolet region showed that increasing high pressure and high temperature lead to alterations in the secondary structure. The mathematical algorithms CONTIN used to calculate secondary structures stated that the 24.5% of alpha-helix of native MTG decreased to 17.2% after a treatment at 400 MPa at 40°C for 60 min and to 6.5% after a treatment at 0.1 MPa at 80°C for 2 min. However, beta-strand structures remained relatively stable after these several treatments. MTG is arranged in a way that the active site is located between beta-strand domains that are surrounded by alpha-helices, the results of this investigation suggested that MTG activity is related with the relative stability of alpha-helix and the outstanding stability of the central beta-strand structure. The irreversible precipitated protein observed at 600 MPa at 40°C for 60 min and 0.1 MPa at 80°C for 2 min was caused principally by the formation of disulfides bonds, because high pressure and high thermal treatment lead to the exposition of the Cys64 residue towards the solvent with the subsequent ability to react with neighbouring cysteine residues. Furthermore, the reaction between protein and reducing sugars resulted in the formation of Maillard products. Furosine, as an indicator of the early stages of Maillard reaction was measured. Concentration values of 261.0 mg/g protein from samples treated at 600 MPa and 40°C and 238.5 mg/g protein from samples treated at and 0.1 MPa and 80°C for 2 min were obtained. Pentosidine a subsequent product observed in the advanced Maillard reaction was also present. Concentrations of 13.7 and 6.7 mg/g protein were obtained in the samples treated at 600 MPa and 40°C for 60 min and 0.1 MPa and 80°C for 2 min, respectively. Kinetic inactivation studies of MTG in a pressure range from 0.1 to 600 MPa at 10, 30, 40, and 50°C within a long time range from 0 to 140 h were performed in order to study MTG stability under the simultaneous effect of pressure and temperature. The inactivation kinetic showed a first and very fast step and a second very slow step suggesting irreversible inactivation behaviour. Activation energy and entropy difference decreased with increasing pressure. Thereby, the inactivation rate constants of enzyme were less temperature dependent at high pressure. The effect of pressure and temperature on MTG inactivation had a synergistic behaviour. At temperatures of 10, 30, and 40°C, increasing pressure leads to increasing inactivation rate constants. However at 50°C a tendency change occurred. Negative activation volumes of –16.2±0.5, -13.6±0.1, -11.2±0.3 cm3/mol were obtained for 10, 30 and 40°C respectively and for treatment at 50°C a positive value of about +3.0±2.0 cm3/mol in a pressure range from 0.1 to 300 and a negative volume of –11.0±0.4 cm3/mol MPa from 300 to 600 MPa were calculated. A pressure/temperature diagram from inactivation rate constants was performed to represent MTG stability. The diagram shows that in a pressure and temperature range from 0.1 to 550 MPa and 10 to 40°C, pressure induces MTG stabilization against heat denaturation. At 50°C in range from 0.1 to 300 MPa, pressure induces also enzyme stabilization again heat denaturation, but at the same temperature and above 300 MPa the enzyme was inactivated. After MTG stability analysis, reaction kinetics from MTG with individual caseins in a TRIS-acetate buffer pH 6.0 were performed under atmospheric pressure (0.1 MPa) and high pressure (400 MPa) at 40°C. The reaction was monitored by gel permeation chromatography under in three assumptions: 1) The initial velocity kinetics was obtained from a non-progressive enzymatic reactions with the products. 2) The substrate concentration exceeded enzyme concentration. 3) The sum of the individual catalytic constants of the reactive glutamine residues inside caseins are represented by a single MTG-monomeric casein complex. Enzyme reaction kinetics of MTG with the individual caseins carried out at 0.1 MPa at 40°C showed Michaelis-Menten-Henri behaviour with maximal velocities of 2.7 x 10-3, 0.8 x 10-3, and 1.3 x 10-3 mmol/L∙min and Km values of 59 x 10-3, 64 x 10-3 and 50 x 10-3 mmol/L of beta-, alpha-s1-, and whole-casein, respectively. This suggested that MTG achieved a maximal velocity with ß-casein, but had the best affinity with acid casein followed by beta- casein and finally alpha-s1-casein. Enzyme reaction kinetics of beta-casein carried out at 400 MPa and 40°C also showed a Michaelis-Menten-Henri behaviour with a similar maximal velocity of 2.6 x 10-3 mmol/L×min, but the Km value of 144 x 10-3 mmol/L showing kinetical similarity to a non-competitive inhibition. The reaction of MTG with alpha-s1-casein under high pressure did not fit in to Henri-Michaelis-Menten kinetics. Kinetic parameters showed that the affinity of MTG to beta- and alpha-s1-casein under atmospheric pressure is higher than the affinity of MTG to these caseins under high pressure. This loss of affinity can be explained by a constant number of reactive glutamine residues of casein, although the protein is unfolding at high pressure, a decrease of enzyme activity of MTG to 74% after treatment at 400 MPa at 40°C for 15 min and self association of casein under thermal and high pressure treatment. Fur technological application, the formation of acid milk gels was studied under the influence of MTG within its range of pH stability. Simultaneous addition of MTG and different concentrations of glucono-delta-lactone (Gdl) to casein solutions (5% w/v) at 40°C was analysed. Gels firmness was accessed by oscillation rheometry and gel permeation chromatography. Oscillation rheometry data showed that the time of gelation decreased with an increasing Gdl concentration added to the system, however higher concentrations of Gdl caused the formation of weaker gels. Addition of 1 g Gdl/g protein without MTG caused gelation within 5 min and a storage module value G´ of 48.9 Pa. With the simultaneous addition of 1 g Gdl/g protein and 6 U MTG/ g protein the gelation time was 4 min and the reached storage modulus was 63.7 Pa. However, the addition of 0.21 g Gdl/g protein and 6 U/g protein MTG increase the gelation time to about 69 min, but, a higher module value G´ of 111.0 Pa was achieved. Addition of high Gdl concentration caused a rapid drop of pH below 5 leading to a fast enzyme inactivation. However addition of very low Gdl concentrations was also not optimal. The simultaneous influence of MTG and Gdl concentration on the gelation time and elastic properties was evaluated by a central composite rotatable design (CCRD). The resulting quadratic storage modulus model showed that, MTG concentration had a significant influence on storage modulus G´ and, that the firmness of the gels increase in direct proportion with MTG activity with the existence of a optimum Gdl concentration, whereas the resulting linear model of the gelation time stated that Gdl concentration has a significant influence on the gelation time, while it is independent of the MTG activity. A maximal firmness of 136 ± 2 Pa was reached between a range of 0.24 - 0.27 g Gdl/g protein and 5.8 U MTG/g within a time from 49 to 59 min. Gel permeation chromatography analysis demonstrated that acid gels induced by Gdl were formed by reversible cross-linking like electrostatic interactions and hydrogen bonds as well as disulfide bonds caused by temperature treatment. Whereas, the addition of MTG proved the formation of non-reversible cross-linking like oligomers based on Ne-(g-glutamyl)- lysine, which gave more firmness and stabilization on the casein gel network.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24908
Date14 September 2006
CreatorsMenéndez Aguirre, Orquídea de María Pastora
ContributorsHenle, Thomas, Rohm, Harald, Rawel, Harshadrai, Hinrichs, Jörg
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds