Return to search

Modes and propagation in microstructured optical fibres

Microstructured optical fibres (MOFs), also commonly called photonic crystal fibres or holey fibres, describe a type of optical fibre in which continuous channels of (typically) air run their entire length. These `holes' serve to both confine electromagnetic waves within the core of the fibre and to tailor its transmission properties. In order to understand and quantify both of these functions, a new computational algorithm was developed and implemented. It solves for the eigenvalues of Maxwell's wave equations in the two-dimensional waveguide cross-section, with radiating boundary conditions imposed outside the microstructure. This yields the leaky modes supported by the fibre. The boundary conditions are achieved exactly using a novel refinement scheme called the Adjustable Boundary Condition (ABC) method. Two implementations are programmed and their computational efficiencies are compared. Both use an azimuthal Fourier decomposition, but radially, a finite difference scheme is shown to be more efficient than a basis function expansion. The properties of the ABC method are then predicted theoretically using an original approach. It shows that the method is highly efficient, robust, automated and generally applicable to any implementation or to other radiating problems. A theoretical framework for the properties of modes in MOFs is also presented. It includes the use of the Bloch-Floquet theorem to provide a simpler and more efficient way to exploit microstructure symmetry. A new, but brief study of the modal birefringence properties in straight and spun fibres is also included. The theoretical and numerical tools are then applied to the study of polymer MOFs. Three types of fibres are numerically studied, fabricated and characterised. Each is of contemporary interest. Firstly, fabrication of the first MOFs with uniformly oriented elliptical holes is presented. A high degree of hole ellipticity is achieved using a simple technique relying on hole deformation during fibre draw. Both form and stress-optic birefringence are characterized over a broad scaled-wavelength range, which shows excellent agreement with numerical modelling. Secondly, an analysis of leaky modes in real air core MOFs, fabricated specifically for photonic band gap guidance, is then used to identify alternative guiding mechanisms. The supported leaky modes exhibit properties closely matching a simple hollow waveguide, weakly influenced by the surrounding microstructure. The analysis gives a quantitative determination of the wavelength dependent confinement loss of these modes and illustrates a mechanism not photonic band gap in origin by which colouration can be observed in such fibres. Finally, highly multimode MOFs (also called `air-clad' fibres) that have much wider light acceptance angles than conventional fibres are studied. An original and accurate method is presented for determining the numerical aperture of such fibres using leaky modes. The dependence on length, wavelength and various microstructure dimensions are evaluated for the first time for a class of fibres. These results show excellent agreement with published measurements on similar fibres and verify that bridge thicknesses much smaller than the wavelength are required for exceptionally high numerical apertures. The influence of multiple layers of holes on the numerical aperture and capture efficiency are then presented. It shows that a substantial increase in both these parameters can be achieved for some bridge thicknesses. Simple heuristic expressions for these quantities are given, which are based on the physical insight provided by the full numerical models. The work is then supported by the first fabrication attempts of large-core polymer MOFs with thin supporting bridges. These fibres exhibit relatively high numerical apertures and show good agreement with theoretical expectations over a very wide scaled-wavelength range.

  1. http://hdl.handle.net/2123/613
Identiferoai:union.ndltd.org:ADTP/283039
Date January 2005
CreatorsIssa, Nader
PublisherUniversity of Sydney. Physics and Optical Fibre Technology Centre
Source SetsAustraliasian Digital Theses Program
LanguageEnglish, en_AU
Detected LanguageEnglish
RightsCopyright Issa, Nader;http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0012 seconds