A mapping f from R^{n} to R^{n} is said to satisfy the Luzin condition N if f maps sets of measure zero to sets of measure zero. It is known to be valid for mappings in the Sobolev space W^{1,p} for p > n and for p <= n there are counterexamples. The aim of this thesis is to summarize known results and study the validity of Luzin condition N for mappings in the Sobolev space W^{2,p}.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:328127 |
Date | January 2013 |
Creators | Matějka, Milan |
Contributors | Hencl, Stanislav, Malý, Jan |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0027 seconds