Return to search

Studien zur Verbreitung und genetischen Struktur des Colibactin-Genclusters in Enterobacteriaceae / Distribution and genetic structure of the Colibactin gene cluster in Enterobacteriaceae

Horizontaler Gentransfer zwischen Bakterien – sogar zwischen verschiedenen Spezies – ist ein wichtiger Mechanismus für den Austausch genetischer Information. Dies kann dem Rezipienten einen selektiven Vorteil verleihen, z. B. durch die schnelle Aneignung von Genclustern, die für Pathogenitäts- oder Fitnessfaktoren kodieren. Die Variabilität bakterieller Genome durch Aneignung und Inkorporation genetischen Materials in das Genom trägt somit erheblich zur Evolution von Bakterien bei. Bakterielle Genome neigen allerdings dazu, nutzlose genetische Information zu verlieren und daher kann horizontal erworbener DNA häufig eine distinkte biologische Funktion zugeordnet werden. Das Colibactin-Gencluster, welches zuerst in Escherichia coli gefunden wurde, weist mehrere Charakteristika einer horizontal erworbenen genomischen Insel auf. Die Größe dieser genomischen Insel beträgt 54 kb und sie umfasst 20 offene Leseraster (ORFs), von denen acht für putative Polyketidsynthasen (PKS), nichtribosomale Peptidsynthasen (NRPS) und Hybride dieser kodieren. Colibactin übt einen zytopathischen Effekt (CPE) auf eukaryotische Zellen in vitro aus. Nach Kokultivierung Colibactin-Gencluster-positiven Bakterien mit eukaryotischen Zellen kommt es zu DNA Doppelstrang Brüchen, Zellzyklus-Arrest in der G2-Phase, Megalozytose und schließlich zum Zelltod. Diese Effekte sind mit denen des Zyklomodulins „Cytolethal Distending Toxin“ (CDT) vergleichbar, allerdings konnte die biologische Funktion des Colibactins in vivo bisher nicht aufgeklärt werden. Das Colibactin-Gencluster wurde bisher nur in Escherichia coli Stämmen der phylogenetischen Gruppe B2 als individuelle genomische Insel, integriert im tRNA-asnW-Gen, vorgefunden. Im Rahmen dieser Arbeit konnte das Colibactin-Gencluster auch in E. coli der phylogenetischen Gruppe B1 und in Citrobacter koseri, Enterobacter aerogenes und Klebsiella pneumoniae subsp. pneumoniae nachgewiesen werden. In diesen Bakterienstämmen ist das Colibactin-Gencluster Teil eines genetischen Elements, das Ähnlichkeit zu integrativen und konjugativen Elementen (ICE) aus E. coli und K. pneumoniae aufweist. Im Gegensatz zur hochkonservierten Integrationsstelle des Colibactin-Genclusters in tRNA-asnW in E. coli der phylogenetischen Gruppe B2 konnte die Integrationsstelle dieses ICE in E. coli der Gruppe B1 in tRNA-asnU bestimmt werden. In Bakterienstämmen der Spezies K. pneumoniae subsp. pneumoniae wurden vier verschiedene Integrationsstellen in fünf analysierten Stämmen identifiziert. Neben der Studien zur Verbreitung und chromosomalen Integration des Colibactin-Genclusters wurden Kolonisierungsstudien im murinen streptomycinbehandelten Intestinaltrakt mit E. coli Stamm Nissle 1917 durchgeführt, um eine mögliche Funktion des Colibactins im Darmtrakt näher zu untersuchen. Weder in nicht-kompetitiven noch in kompetitiven Versuchsdurchführungen konnte dabei ein Kolonisierungsvorteil durch Colibactin nachgewiesen werden. Die Ergebnisse dieser Arbeit haben gezeigt, dass das Colibactin-Gencluster in verschiedenen Spezies der Enterobacteriaceae vorhanden und funktional ist. Das Auftreten dieses sowohl als individuelle genomische Insel als auch als Teil eines ICE veranschaulicht die genetische Plastizität dieses Elements und die Bedeutung des horizontalen Transfers genetischen Materials. Die biologische Funktion des Colibactins in vivo bleibt weiterhin unklar und könnte sowohl die bakterielle Fitness als auch die Virulenz beeinflussen. / Horizontal gene transfer between bacteria – even between different species – has been shown to be an important mechanism for exchange of genetic material. This may confer a selective advantage to the recipient, e. g. the rapid acquisition of gene clusters coding for pathogenicity or fitness factors. The variability of bacterial genomes enabled by acquisition and incorporation of genetic material into their genome contributes considerably to bacterial evolution. Bacterial genomes tend to lose useless genetic information and therefore horizontally acquired DNA can most frequently be connected to a distinct biological function. The colibactin gene cluster initially discovered in Escherichia coli displays several features of a horizontally acquired genomic island. This genomic island is approximately 54 kb in size and consists of 20 open reading frames (ORFs), of which eight code for putative polyketide synthases (PKS), non-ribosomal peptide synthases (NRPS) and hybrids thereof. The synthesized hybrid non-ribosomal peptide-polyketide colibactin exerts a cytopathic effect (CPE) on eukaryotic cells, DNA double strand breaks are induced, the cells are arrested in the G2-phase of the cell cycle and exhibit megalocytosis and cell death. These effects are comparable to the effects of the cyclomodulin cytolethal distending toxin (CDT), but the biological function of colibactin in vivo is still unknown. So far the colibactin gene cluster has only been found in Escherichia coli strains of the phylogenetic lineage B2 as an individual genomic island integrated at the tRNA-asnW gene. In context of this thesis the colibactin gene cluster could be identified in E. coli strains of the phylogenetic group B1 as well as in Citrobacter koseri, Enterobacter aerogenes and Klebsiella pneumoniae subsp. pneumoniae. In those bacterial strains the colibactin gene cluster is part of a genetic element, which exhibits similarities to integrative and conjugative elements (ICE) previously described in E. coli and K. pneumoniae. In contrast to the highly conserved integration site of the colibactin gene cluster at tRNA-asnW in E. coli of the phylogenetic lineage B2, integration at tRNA-asnU was determined in E. coli of group B1. In bacterial strains of the species K. pneumoniae subsp. pneumoniae four different integration sites in a total of five strains were identified. Besides the surveys concerning the distribution and chromosomal integration of the colibactin gene cluster colonization studies of the murine streptomycin-treated intestinal tract were conducted using E. coli strain Nissle 1917 to examine a possible effect of colibactin in this context. However, there was no evidence providing a colibactin-related advantage during colonization neither in non-competitive nor in competitive experimental setups. In this thesis the existence and functionality of the colibactin gene cluster within different species of the Enterobacteriaceae was shown. Its occurrence as an individual genomic island as well as a part of an ICE demonstrates the genetic plasticity of this element and the impact of horizontally transferred genetic material. The biological function of colibactin in vivo remains to be elucidated and may affect both bacterial fitness and virulence.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:3836
Date January 2009
CreatorsPutze, Johannes
Source SetsUniversity of Würzburg
Languagedeu
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds