[Truncated abstract] Alzheimers disease (AD) is a progressive neurodegenerative disease which manifests clinically as personality changes and global cognitive decline resulting in a loss of function, ultimately leading to death. Whilst causal genetic mutations have been identified, accounting for a small proportion of familial cases, the vast majority of all AD cases are late onset and idiopathic. However, a number of risk factors have been identified, including age associated changes in the reproductive hormones estrogen and the gonadotropins. Previous in vitro and in vivo studies have implicated both estrogen and the gonadotropins in the regulation of the neurotoxic beta amyloid (Aß) peptide, accumulation of which is thought to be a key pathogenic event in the development of AD, but the role of these hormones in the etiology and pathogenesis of AD remains contentious. The aim of this thesis was to further understanding of the role of female reproductive hormones in modulating susceptibility to AD. The role of menopausal hormone dysregulation in behavior, cognitive decline and Aß-related neuropathology was examined in vivo in 4 studies using animal models of AD and menopause. The first two studies used a mouse model of AD expressing a human PS1 mutation (PS1KI) to examine the effects of ovariectomy as a model of menopause on cognition and neuropathology. Ovariectomy was found to selectively impair learning on a spatial working memory task without affecting working memory recall or reference memory performance. However, this cognitive impairment was not associated with any changes in Aß accumulation or oxidative stress. ... However, these findings cannot explain the lack of effect of estrogen supplementation on Aß levels. It is possible that supra-physiological doses of estrogen are necessary to yield anti-amyloidogenic and anti-oxidative benefits in ovariectomized sheep. It is becoming clear that the relationship between hormone changes at menopause and risk of AD may be more complicated than previously conceived. This study has begun to tease apart the relative contributions of estrogen and the gonadotropin hormones in the modulation of Aß, accumulation of which may confer susceptibility to AD. The findings presented indicate that the gonadotropins may play an important role in the regulation of AD-related behavior and cognition. The observed functional effects of the gonadotropins may also have implications for our understanding of behavioral and cognitive changes occurring during reproductive events. Based on the evidence presented here, combined with previous literature, it is clear that both estrogen and the gonadotropins are involved in the modulation of Aß accumulation, however, elucidation of the circumstances necessary to elicit these effects and their clinical relevance to humans will require further investigation. These findings contribute to a more sophisticated understanding of the post-menopausal hormonal milieu, recognizing the role of the gonadotropin hormones and that gonadal estrogen depletion does not necessarily result in brain estrogen depletion.
Identifer | oai:union.ndltd.org:ADTP/258990 |
Date | January 2009 |
Creators | Barron, Anna May |
Publisher | University of Western Australia. School of Psychiatry and Clinical Neurosciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Anna May Barron, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0021 seconds