Return to search

The Effect of Thermocycling on the Failure Load of a Standard Orthodontic Resin in Shear-Peel, Tension, and Torsion

Indiana University-Purdue University Indianapolis (IUPUI) / New products are frequently developed for bonding brackets. This continuum brings about incessant studies attempting to prove or disprove their value. The need to compare the results of bond failure studies is made difficult if not impossible by the variation of published testing methods. The purpose of this study is to compare the differential effects of thermocycling, as a lab protocol, on three debonding techniques, shear-peel, tension, and torsion when using a traditional orthodontic resin adhesive. A standard orthodontic resin, Transbond™ XT (3M Unitek, Monrovia, CA) was used to bond 102 flattened 0.018-inch stainless steel brackets (3M Unitek) to flattened bovine incisors. Two step acid etching and priming (37 % phosphoric acid gel and Transbond MIP Primer, 3M Unitek) was used to prepare the enamel for bonding. During bonding, the resin thickness was held consistent. The bonding was accomplished under controlled temperature and humidity. Half of the samples were thermocycled prior to debonding. The samples were debonded in shear-peel, tension, and torsion. The data showed no significant differences between thermocycling and nonthermocycling in shear-peel or torsion, but in tension the thermocycling group had a statistically significant higher failure load. Overall, was a trend toward increased bond strength in the thermocycled group. The increase is likely the result of continued polymerization during thermocycling. The statistical difference that is noted in tension is thought to be due to the location of the highest stress being in the center of the resin pad. This would be the location of the least initial polymerization. The use of thermocycling as a lab protocol during bracket failure studies in shear-peel and torsion is not necessary when using traditional orthodontic resin.

Identiferoai:union.ndltd.org:IUPUI/oai:scholarworks.iupui.edu:1805/34190
Date January 2006
CreatorsBunch, Jason Keith
ContributorsKatona, Thomas R., Baldwin, James J., Hohlt, William F., Moore, B. Keith, Shanks, James C.
Source SetsIndiana University-Purdue University Indianapolis
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.002 seconds