Return to search

Recovery of Phosphorus from HTC Converted Municipal Sewage Sludge / Utvinning av fosfor från HTC-behandlat kommunalt avloppsslam

With a growing population but scarce primary phosphorus sources, recycling of the vital element has become an important research area throughout the last decades. Several streams in society are potential resources for recirculation but municipal sewage is considered one of the most available materials. With current technologies in wastewater treatment, over 95 % of the influent phosphorus is captured in the sludge along with a variety of other nutrients. However, due to increasing fractions of pharmaceutical residues and heavy metals also following the sludge, direct use as fertiliser is being phased out in most European countries in favour of extraction methods. Extraction of nutrients from the sludge is problematic mainly because of dewaterability difficulties. Thus, pretreatment of the material is required to access the desired components at a reasonable cost and energy consumption. Hydrothermal carbonisation (HTC) is a technology showing high potential for treatment of wet carbonaceous material without necessity of prior drying. The resulting product is hygenised, essentially free from pharmaceuticals and easily dewatered. In this Master’s thesis principal conditions for release of phosphorus from HTC converted digested sludge under acid leaching have been experimentally investigated. Dependence of time, temperature, dry solids (DS) content of HTC sludge and pH have been studied. Also, differences arising from acid type have been considered by comparing acidulation with sulphuric acid and hydrochloric acid. A short investigation of the recovery of the dissolved phosphorus from leachate by precipitation was also performed where calcium ions were added to both sulphuric and hydrochloric acid leachates. Extraction of phosphorus from HTC converted sludge has shown to be easier than from pure metal phosphates under comparable leaching conditions and pH values. Also, the dissolved phosphorus concentrations obtained in the presence of HTC converted sludge was higher than for theoretical equilibrium concentrations where all phosphorus is in the form of iron(III) or aluminium(III) phosphate. A maximum leachate phosphorus concentration was around 2500 mg/L, recorded in leaching experiments performed at a dry HTC product concentration of 10 % (w/w) in an extraction solution of water acidified with sulphuric acid. Leaching procedures performed at pH values between 2 and 1 with 1 and 5 % DS HTC product resulted in dissolution of 90 % of ingoing phosphorus at an acid charge of 0.5 kg H2SO4/kg DS HTC product. At this chemical charge, release of phosphorus from converted sludge is fast. Similar amounts of dissolved phosphorus were recorded after 15 min as after 16 h retention time. Possibly, time dependence becomes relevant at lower charges. The dissolution of phosphorus is negatively affected by temperature increases at moderate acid loads, and by possibly by hydrochloric acid at pH values below 2. Addition of calcium gave a dissolved phosphorus reduction of 99.9 % in both the sulphuric acid and hydrochloric acid leachates. Gypsum, CaSO4, also precipitates from the sulphuric acid leachate resulting in 67 % more dry mass. Due to high release of metals during acidulation, the precipitate was also contaminated with large fractions of metals in addition to calcium. In summary, this investigation has demonstrated that up to 90 % of the phosphorus content of the HTC converted sludge can be released by acid leaching, and almost 100 % of the phosphorus can be recovered from the leachate by precipitation with calcium ions.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-290
Date January 2016
CreatorsSirén Ehrnström, Matilda
PublisherLuleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds