Return to search

Genetic contributors to congenital joint dislocation

Understanding the molecular basis of Mendelian disorders featuring joint dislocation can enhance the knowledge of genetic or cellular pathways required in joint development, and provide candidate genes for studying related complex disorders, such as developmental dysplasia of the hip. Two strategies were employed in this project to investigate Mendelian contributors to congenital joint dislocation.
The first strategy was to investigate in-depth a gene known to be associated with joint dislocation. Missense mutations or small in-frame deletions in FLNB, encoding filamin B, have previously been associated with a spectrum of osteochondrodysplasias. Screening a larger cohort established FLNB as the sole underlying disease gene for atelosteogenesis type I and III and also boomerang dysplasia, which was previously thought clinically to be allelic to AOI. Mutations in FLNB cause a large proportion of Larsen syndrome cases with phenotypes reminiscent of the early case series reported. Atypical or "recessive" Larsen syndrome may therefore be due to a different underlying genetic aberration. The disease-associated amino acid substitutions or in-frame deletion/insertions cluster to two main regions of the filamin B protein: the calponin homology 2 domain of the actin-binding domain, and repeats 13-17 of the rod domain. To analyse the functions of these regions, yeast two-hybrid analyses were performed. No interactors were identified with the calponin homology 2 domain, which suggests the amino acid substitutions may disrupt actin binding or the regulation thereof. A candidate interactor, centromere protein J, was identified that binds to repeats 13-15, and could suggest a model for aberrant cell division seen in growth plates of bones of individuals with atelosteogenesis types I and III and boomerang dysplasia.
The second strategy used in this project was to investigate the genetic cause of a novel syndrome featuring joint dislocation. A neurocutaneous phenotype segregated in a consanguineous New Zealand family, and through a genetic mapping strategy, a significantly linked locus was identified at 10q23 (Z = 3.63), in which segregation of a common ancestral haplotype fits the linkage hypothesis of homozygosity by descent. Candidate gene analysis and subsequent screening identified a missense mutation 2350C>T in ALDH18A1, which predicts the substitution H784Y in the encoded protein [Delta]�-pyrroline-5-carboxylate synthase (P5CS). The known function of P5CS in proline and ornithine biosynthesis was not affected by the presence of H784Y in an indirect assay, and therefore the hypothesis proposed was that a novel, unknown moonlighting function of P5CS is perturbed causing the phenotype segregating in the family. As an initial exploration of functions of P5CS in the cell, yeast two-hybrid analysis was undertaken.
This project examined the contribution of two genes, FLNB and ALDH18A1, to Mendelian congenital joint dislocations. How the cellular functions of the encoded proteins in the cytoskeleton, metabolism, or signal transduction, are critical for joint development is ill understood. Future investigations aimed at identifying candidate genes that confer susceptibility to developmental dysplasia of the hip should consider candidate genes that encode proteins related in function to the products of the FLNB and ALDH18A1 genes.

Identiferoai:union.ndltd.org:ADTP/217856
Date January 2007
CreatorsBicknell, Louise Susan, n/a
PublisherUniversity of Otago. Dunedin School of Medicine
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://policy01.otago.ac.nz/policies/FMPro?-db=policies.fm&-format=viewpolicy.html&-lay=viewpolicy&-sortfield=Title&Type=Academic&-recid=33025&-find), Copyright Louise Susan Bicknell

Page generated in 0.0135 seconds