The objective of this thesis is to present an algorithm for processing infrared images and accomplishing automatic detection and path tracking of moving subjects with fever. The detection is based on two main features: the distinction between the geometry of a human face and other objects in the field of view of the camera and the temperature of the radiating object. These features are used for tracking the identified person with fever. The position of camera with respect to direction of motion the walkers appeared to be critical in this process. Infrared thermography is a remote sensing technique used to measure temperatures based on emitted infrared radiation. This application may be used for fever screening in major public places such as airports and hospitals. For this study, we first look at human body and objects in a line of view with different temperatures that would be higher than the normal human body temperature (37.8C at morning and 38.3C at evening). As a part of the experimental study, two humans with different body temperatures walking a path were subjected to automatic fever detection applied for tracking the detected human with fever. The algorithm consists of image processing to threshold objects based on the temperature and template matching used for fever detection in a dynamic human environment.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/37332 |
Date | January 2018 |
Creators | Fallah Haghmohammadi, Hamidreza |
Contributors | Necsulescu, Dan-Sorin |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds