Return to search

An Application and Analysis of Recursive Sudvidision Schemes

The following paper discusses the application of two subdivision algorithms for the purpose of finding an optimal way of rendering smooth spherical surfaces. Subdivision algorithms are used on three dimensional models. These algorithms typically manipulate the original object to produce one that is more visually pleasing and more realistic to the object we are attempting to recreate. We applied two popular subdivision algorithms to some simple meshes to compare their outcomes. In this project we implemented some of these algorithms in order to gain some insight into how these algorithms differ in the way that they are transforming the input mesh. Our desired goal was to see if there is any basis for which we can say that one algorithm outperforms the other. Our comparison runs through several iterations of subdivision and compares their theses meshes visually. In comparing these meshes our desired visual outcome is a mesh that is more smooth or more spherical. Another metric we looked at was the number of faces being produced for each mesh. In addition, we compared the algorithms in terms of the time they took to perform subdivision. These metrics form the basis for our comparison of performance and we discuss the details of these further in this paper.In our results we found that the two algorithms we are comparing perform quite similarly on certain meshes with respect to the visual output and the time they take to perform subdivision. On meshes of different types however the algorithms might output visually distinguishable meshes upon repeated subdivisions. Finding what factors influence whether the algorithms perform similarly provides an avenue for future work.

Identiferoai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:scripps_theses-2097
Date01 January 2017
CreatorsVillatoro, Cecilia
PublisherScholarship @ Claremont
Source SetsClaremont Colleges
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceScripps Senior Theses
Rights© 2017 Cecilia A Villatoro, default

Page generated in 0.0016 seconds