Le béton est un matériau hétérogène complexe dont les déformations comportent une partie différée qui est affectée par un grand nombre de facteurs tels que la température, l'humidité relative et l'évolution de la microstructure. La prise en compte des déformations différées et en particulier du fluage est indispensable dans le calcul des ouvrages en béton tels que ceux destinés à stocker des déchets radioactifs. Ce travail de thèse a pour objectifs : (1) de développer un modèle de fluage simple et robuste pour le béton en faisant appel à la micromécanique et en tenant compte de l'endommagement et des effets thermiques et hydriques ; (2) d'implanter numériquement le modèle développé dans un code de calcul par éléments finis de façon à pouvoir simuler le comportement d'éléments de structure simples en béton. Pour atteindre ce double objectif, le travail est scindé en trois parties. Dans la première partie, le matériau cimentaire est à l'échelle microscopique supposé être constitué d'une matrice viscoélastique linéaire caractérisée par un modèle de Maxwell généralisé et de phases particulaires représentant les granulats élastiques et les pores. Le schéma micromécanique de Mori-Tanaka, la transformée de Laplace-Carson et son inversion sont alors utilisés pour obtenir dans l'espace temporel des estimations analytiques ou numériques de ses paramètres mécaniques et hydromécaniques. Ensuite, le modèle micromécanique de fluage obtenu est couplé au modèle d'endommagement de Mazars via le concept de pseudo-déformations introduit par Schapery. Les paramètres intervenant dans le modèle viscoélastique endommageable ainsi établi sont systématiquement identifiés à l'aide de données expérimentales. Enfin, la prise en compte des effets de la température et de l'humidité relative dans le modèle viscoélastique endommageable est basée sur la méthode du temps équivalent ; l'efficacité de cette approche est démontrée et discutée dans le cas de chargements simples de fluage / Concrete is a complex heterogeneous material whose deformations include a delayed part that is affected by a number of factors such as temperature, relative humidity and microstructure evolution. Taking into account differed deformations and in particular creep is essential in the computation of concrete structures such as those dedicated to radioactive waste storage. The present work aims: (1) at elaborating a simple and robust model of creep for concrete by using micromechanics and accounting for the effects of damage, temperature and relative humidity; (2) at numerically implementing the creep model developed in a finite element code so as to simulate the behavior of simple structural elements in concrete. To achieve this twofold objective, the present work is partitioned into three parts. In the first part the cement-based material at the microscopic scale is taken to consist of a linear viscoelastic matrix characterized by a generalized Maxwell model and of particulate phases representing elastic aggregates and pores. The Mori-Tanaka micromechanical scheme, the Laplace-Carson transform and its inversion are then used to obtain analytical or numerical estimates for the mechanical and hydromechanical parameters of the material. Next, the original micromechanical model of creep is coupled to the damage model of Mazars through the concept of pseudo-deformations introduced by Schapery. The parameters involved in the creep-damage model thus established are systematically identified using available experimental data. Finally, the effects of temperature and relative humidity are accounted for in the creep-damage model by using the equivalent time method; the efficiency of this approach is demonstrated and discussed in the case of simple creep tests
Identifer | oai:union.ndltd.org:theses.fr/2012PEST1162 |
Date | 10 December 2012 |
Creators | Thai, Minh Quan |
Contributors | Paris Est, Hé, Qi-Chang |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds