Return to search

Safrole Oxide Induced Human Umbilical Vein Vascular Endothelial Cell Differentiation Into Neuron-Like Cells by Depressing the Reactive Oxygen Species Level at the Low Concentration

Previously, we found that 5-25 μg/ml safrole oxide could inhibit apoptosis and dramatically make a morphological change in human umbilical vein vascular endothelial cells (HUVECs). But the possible mechanism by which safrole oxide function is unknown. To answer this question, in this study, we first investigated the effects of it on the activity of nitric oxide synthetase (NOS), the expressions of Fas and integrin β4, which play important roles in HUVEC growth and apoptosis, respectively. The results showed that, at the low concentration (10 μg/ml), safrole oxide had no effects on NOS activity and the expressions of Fas and integrin β4. Then, we investigated whether HUVECs underwent differentiation. We examined the expressions of neuron-specific enolase (NSE) and neurofilament-L (NF-L). Furthermore, we analyzed the changes of intracellular reactive oxygen species (ROS). After 10 h of treatment with 10 μg/ml safrole oxide, some HUVECs became neuron-like cells in morphology, and intensively displayed positive NSE and NF-L. Simultaneously, ROS levels dramatically decreased during HUVECs differentiation towards neuron-like cells. At the low concentration, safrole oxide induced HUVECs differentiation into neuron-like cells. Furthermore, our data suggested that safrole oxide might perform this function by depressing intracellular ROS levels instead of by affecting cell growth or apoptosis signal pathways.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-19411
Date01 February 2006
CreatorsSu, Le, Zhao, Jing, Zhao, Bao Xiang, Miao, Jun Ying, Yin, De Ling, Zhang, Shang Li
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0014 seconds