To further improve performances of machine systems, mechatronics offers some opportunities. Traditionally, mechatronics deals with how to integrate mechanics and electronics without a systematic approach. This thesis generalizes the concept of mechatronics into a new concept called hybrid intelligent machine system. A hybrid intelligent machine system is a system where two or more elements combine to play at least one of the roles such as sensor, actuator, or control mechanism, and contribute to the system behaviour. The common feature with the hybrid intelligent machine system is thus the presence of two or more entities responsible for the system behaviour with each having its different strength complementary to the others. The hybrid intelligent machine system is further viewed from the systems structure, behaviour, function, and principle, which has led to the distinction of (1) the hybrid actuation system, (2) the hybrid motion system (mechanism), and (3) the hybrid control system. <p>This thesis describes a comprehensive study on three hybrid intelligent machine systems. In the case of the hybrid actuation system, the study has developed a control method for the true hybrid actuation configuration in which the constant velocity motor is not mimicked by the servomotor which is treated in literature. In the case of the hybrid motion system, the study has resulted in a novel mechanism structure based on the compliant mechanism which allows the micro- and macro-motions to be integrated within a common framework. It should be noted that the existing designs in literature all take a serial structure for micro- and macro-motions. In the case of hybrid control system, a novel family of control laws is developed, which is primarily based on the iterative learning of the previous driving torque (as a feedforward part) and various feedback control laws. This new family of control laws is rooted in the computer-torque-control (CTC) law with an off-line learned torque in replacement of an analytically formulated torque in the forward part of the CTC law. This thesis also presents the verification of these novel developments by both simulation and experiments. Simulation studies are presented for the hybrid actuation system and the hybrid motion system while experimental studies are carried out for the hybrid control system.
Identifer | oai:union.ndltd.org:USASK/oai:usask.ca:etd-08312005-144258 |
Date | 02 September 2005 |
Creators | Ouyang, Puren |
Contributors | Zhang, W. J. (Chris), Sumner, David, Saadat Mehr, Aryan, Nikravesh, Masoud, Gupta, Madan M., Degenstein, Douglas A., Chen, X. B. (Daniel), Burton, Richard T. |
Publisher | University of Saskatchewan |
Source Sets | University of Saskatchewan Library |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://library.usask.ca/theses/available/etd-08312005-144258/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0024 seconds