Return to search

Capture de gènes par hybridation couplée au séquençage de nouvelle génération pour l'exploration d'échantillons métagénomiques. : Génomique et écologie microbienne / Hybridization capture coupled to next-generation sequencing to explore metagenomic samples

Les microorganismes représentent la forme de vie la plus diverse et abondante sur Terre et jouent un rôle fondamental dans tous les processus biologiques. Cependant, du fait de la grande diversité des communautés microbiennes, la caractérisation fine des environnements complexes reste difficile par les approches moléculaires actuelles de PCR et de métagénomique. En effet, ces approches ne conduisent qu’à une caractérisation partielle des communautés et ne permettent pas systématiquement d’associer la structure des communautés aux fonctions métaboliques réalisées. L’approche de capture de gènes par hybridation appliquée à des échantillons métagénomiques complexes a démontré son intérêt pour révéler toute la diversité connue mais aussi inconnue des biomarqueurs fonctionnels ciblés, ainsi que pour enrichir leurs régions flanquantes sur quelques centaines de permettant en évidence des associations de gènes. Ainsi, les travaux de thèse ont visé à développer une nouvelle méthode de capture de gènes par hybridation capable d’enrichir de façon ciblée de larges régions génomiques à partir d’échantillons complexes, permettant ainsi de faire le lien entre structure et fonction des communautés microbiennes. Ces développements ont nécessité la détermination de sondes de capture, l’utilisation d’une méthode d’extraction d’ADN de haut poids moléculaire et la mise au point d’un protocole de capture permettant de piéger des fragments nucléiques de grande taille (jusqu’à 50 kb). La validation de la méthode de capture par hybridation sur un échantillon environnemental de sol a permis de révéler tout son potentiel. Appliquée au gène exprimant l’ARNr 16S, cette stratégie a permis de révéler une diversité microbienne non accessible par les approches moléculaires conventionnelles, avec une résolution d’identification jusqu'au niveau de l’espèce rendue possible grâce à la reconstruction de la séquence complète de ce marqueur phylogénétique. Appliquée à un gène fonctionnel, elle a conduit à la reconstruction de la séquence du biomarqueur et de ses régions flanquantes pouvant atteindre plusieurs dizaines de kb, permettant d’identifier les microorganismes possédant les capacités métaboliques d’intérêt. Ainsi, la capture par hybridation représente une approche alternative prometteuse pour le diagnostic environnemental en conduisant à une meilleure caractérisation des communautés microbiennes. / Microorganisms are the most diverse and abundant life forms on Earth and are key players in thefunctioning of all biological processes. Nevertheless, PCR and metagenomics strategies aiming to describemicrobial communities are hampered by their huge diversity. Indeed, these molecular methods only drive to apartial description of communities and do not systematically allow linking functions back to the identities of themicroorganisms. Hybridization capture applied to complex metagenomic samples has demonstrated its efficiency to reveal all known and unknown diversity of targeted biomarkers, and to enrich their flanking regions over a few hundred bp facilitating the discovery of gene associations.Thus, this work aimed at developing a new hybridization capture method capable of specifically enrichinglarge genomic regions from complex samples allowing to associate structure and functions of communities. Thedevelopment of this method required the design of capture probes, the use of a high molecular weight DNAextraction method, and the elaboration of a capture protocol dedicated to the enrichment of large genomicfragments (up to 50 kbp).The validation of the hybridization capture method on an environmental soil sample uncovered all itspotential. Applied to the 16S rRNA gene, this strategy revealed greater microbial diversity than conventionalmolecular methods and improved phylogenetic resolution up to the species level thanks to the reconstruction offull-length genes. Applied to a functional gene, the method enabled the reconstruction of large genomic regionscarrying the targeted biomarker and its flanking regions over several tens of kbp, leading to the identification ofmicroorganisms with specific metabolic functions. Hybridization capture thus appears as a promising alternativemethod for environmental diagnosis, through providing a better knowledge of microbial communities.

Identiferoai:union.ndltd.org:theses.fr/2016CLF1MM24
Date28 October 2016
CreatorsGasc, Cyrielle
ContributorsClermont-Ferrand 1, Peyret, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds