Environmental awareness, production costs and operating expenses have provided a large incentive for the investigation of novel and more efficient fluid power technologies for decades. In the earth-moving sector, hydraulic hybrids have emerged as a highly efficient and affordable choice for the next generation hydraulic systems. Displacementcontrolled (DC) actuation has demonstrated that, when coupled with hydraulic hybrids, the engine power can be downsized by up to 50% leading to substantial savings. This concept has been realized by the authors‘ group on an excavator prototype where a secondary-controlled hydraulic hybrid drive was implemented on the swing. Actuatorlevel controls have been formulated by the authors‘ group but the challenge remains to effectively manage the system on the supervisory-level. In this paper, a power management controller is proposed to minimize fuel consumption while taking into account performance. The algorithm, a feedforward and cost-function combination considers operator commands, the DC actuators‘ power consumption and the power available from the engine and hydraulic hybrid as metrics. The developed strategy brings the technology closer to the predicted savings while achieving superior operability.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-200450 |
Date | 03 May 2016 |
Creators | Busquets, Enrique, Ivantysynova, Monika |
Contributors | Dresdner Verein zur Förderung der Fluidtechnik e. V. ,, Technische Universität Dresden, Fakultät Maschinenwesen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:conferenceObject |
Format | application/pdf |
Source | 10th International Fluid Power Conference (10. IFK) March 8 - 10, 2016, Vol. 3, pp. 163-174 |
Page generated in 0.007 seconds