Approved for public release; distribution is unlimited / Internal solitary waves, or solitons, are often generated in coastal or continental shelf regions when tidal currents advect stratified water over bathymetric relief, creating an internal tide which non-linearly evolves into one or more solitons. A major consequence of solitons in a stratified environment is the vertical displacement of water parcels which can lead to sound speed variability of order 10m/s with spatial scales of order 100 meters and timescales of order minutes. Thus significant variations in sonar performance on both surface based ships and submarines can be expected. An understanding into the nature of acoustic propagation through these waves is vital for future development of sonar prediction systems. This research investigates acoustic normal mode propagation through solitons using a 2D parabolic equation simulation and weak acoustic scattering theory whose primary physics is a single scatter Bragg mechanism. To simplify the theory, a Gaussian soliton model is developed that compares favorably to the results from a traditional sech2 soliton model. The theory of sound through a Gaussian soliton was then tested against the numerical simulation under conditions of various acoustic frequency, source depths, soliton position relative to the source and soliton number. The theoretical results compare favorably with numerical simulations at 75, 150 and 300-Hz. Higher frequencies need to be tested to determine the limits of the first order theory. Higher order theory will then be needed to address even higher frequencies and to deal with weakly excited modes. This research is the first step in moving from a state of observing acoustic propagation through solitons, to one of predicting it. / Outstanding Thesis / Royal Australian Navy author
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/2699 |
Date | 06 1900 |
Creators | Young, Aaron C. |
Contributors | Colosi, John, Reeder, Benjamin, Naval Postgraduate School (U.S.), Oceanography |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xvi, 65 p. : col. ill., application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, is not copyrighted in the U.S. |
Page generated in 0.002 seconds