Return to search

Fabrication of alginate hydrogel scaffolds and cell viability in calcium-crosslinked alginate hydrogel

Tissue-engineering (TE) is one of the most innovative approaches for tackling many diseases and body parts that need to be replaced, by developing artificial tissues and organs. For this, tissue scaffolds play an important role in various TE applications. A tissue scaffold is a 3D (3D) structure with interconnected pore networks and used to facilitate cell growth and transport of nutrients and wastes while degrading gradually itself. Many fabrication techniques have been developed recently for incorporating living cells into the scaffold fabrication process and among them; dispensing-based rapid prototyping techniques have been drawn considerable attention due to its fast and efficient material processing. This research is aimed at conducting a preliminary study on the dispensing-based biofabrication of 3D cell-encapsulated alginate hydrogel scaffolds.
Dispensing-based polymer deposition system was used to fabricate 3D porous hydrogel scaffolds. Sodium alginate was chosen and used as a scaffolding biomaterial. The influences of fabrication process parameters were studied. With knowledge and information gained from this study, 3D hydrogel scaffolds were successfully fabricated. Calcium chloride was employed as crosslinker in order to form hydrogels from alginate solution. The mechanical properties of formed hydrogels were characterized and examined by means of compressive tests. The influences of reagent concentrations, gelation time, and gelation type were studied. A post-fabrication treatment was used and characterized in terms of strengthening the hydrogels formed. In addition, the influence of calcium ions used as crosslinker on cell viability and proliferation during and after the dispensing fabrication process was examined and so was the influence of concentration of calcium solutions and exposing time in both media and alginate hydrogel. The study also showed that the density of encapsulated cells could affect the viscosity of alginate solution.
In summary, this thesis presents a preliminary study on the dispensing-based biofabrication of 3D cell-encapsulated alginate hydrogel scaffolds. The results obtained regarding the influence of various factors on the cell viability and scaffold fabrication would form the basis and rational to continue research on fabricating 3D cell-encapsulated scaffolds for specific applications.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-07242011-170908
Date03 August 2011
CreatorsCao, Ning
ContributorsChen, Daniel X. B., Lin, Yen-Han, Klymyshyn, David, Schreyer, David, Verge, Valerie
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-07242011-170908/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds