Return to search

Modellierung und Simulation von Hydrogelen und hydrogelbasierten Schichtsystemen

Ziel der vorliegenden Arbeit ist es, das Verhalten polyelektrolytischer Gele und Hydrogelschichtsysteme auf Basis der Kontinuumsmechanik zu modellieren. Die Untersuchung des Materialverhaltens gegenüber externer Stimulation erfolgt anhand numerischer Simulationen, wodurch Einblicke in den komplexen Quellprozess und darin auftretende Phänomene gewährt werden. Die vorgenommene Modellierung und Simulation gestattet dabei eine Optimierung der Systemeigenschaften für den Anwendungsfall. Anwendungsfehler und die Anzahl nötiger Versionen zur Systemgestaltung können hierdurch effektiv verringert werden.
Hydrogele stellen wichtige Vertreter aus der Klasse intelligenter Materialien dar, d.h. sie sind in der Lage auf Umwelteinflüsse durch eine reversible Änderung ihrer Materialeigenschaften zu reagieren. Sie bestehen aus einer mit Wasser gefüllten Polymermatrix, in welcher ionische Ladungsträger vorliegen. Dabei sind mobile Ladungsträger im Wasser enthalten. Die Materialeigenschaften von Hydrogelen beruhen auf ihrer chemischen Zusammensetzung und können jeweils spezifisch für ihren Anwendungsfall angepasst werden. So reagieren polyelektrolytische Hydrogele mit einem reversiblen Quell- bzw. Schrumpfungsprozess auf externe elektrische Felder und die Änderung der chemischen Zusammensetzung im umgebenden Lösungsmittelbad.
Die reversible Volumenänderung gegenüber externer Stimuli eröffnet Hydrogelen ein breites Anwendungsfeld. Insbesondere sind sie für die Entwicklung neuer Messsysteme relevant, da über klassische Messgrößen hinaus auch sehr spezifische chemische Größen untersucht werden können. Auch eignen sich Hydrogele als aktive Komponenten mikrofluidischer Ventile, welche auf die Zusammensetzung des Fluides reagieren. Da sie keine externe Ansteuerung bzw. Energieversorgung benötigen, sind sie leichter miniaturisierbar als klassische Ventile. Aufgrund ihrer hohen Leistungsdichte sind Hydrogele prinzipiell auch für die Entwicklung leichter und energieeffizienter Aktoren geeignet. Hierbei stellt die von der Größe des Hydrogels abhängige Reaktionszeit bislang jedoch eine Hürde dar, wodurch ihr Einsatz in kleinskaligen Anwendungen wahrscheinlicher ist. Die Kombination mehrerer Schichten aus Hydrogelen ermöglicht hierbei die Anwendung als Biegeaktoren bzw. Messsysteme mit erhöhter Genauigkeit.
Da ein fundiertes Wissen über die komplexen Vorgänge im Hydrogel eine große Rolle bei der Weiterentwicklung neuartiger Anwendungen spielt, wird in dieser Arbeit das komplexe Materialverhalten numerisch abgebildet. Hierbei wird insbesondere Wert auf die Interaktion der chemischen, elektrischen sowie der mechanischen Domäne gelegt. Dabei wird a priori angenommen, dass die komplizierte Mikrostruktur des porösen Hydrogels als Kontinuum darstellbar ist und die relevanten Phänomene über Feldgleichungen abgebildet werden können.
Es wird eine Einführung über polyelektrolytische Hydrogele und Hydrogelschichtsysteme gegeben, wobei insbesondere auf deren mikrostrukturellen Aufbau und daraus ableitbare Einsatzgebiete eingegangen wird. Mittels eines Überblicks über Modellierungsansätze in der publizierten Literatur werden die hier verwendeten Modellierungsansätze motiviert und in das Umfeld bestehender Vorarbeiten eingeordnet. Nach der Einführung notwendiger Grundlagen der physikalischen Chemie wird die Modellbildung mit der gewählten Kinematik, den Bilanzgleichungen und den Materialgleichungen zur Beschreibung von Hydrogelen und Hydrogelschichtsystemen vorgestellt. Die Bilanzgleichungen umfassen hierbei die Massenerhaltung des Polymers und der ionischen Spezies, die Impuls- und Drehimpulsbilanz sowie die Maxwell-Gleichungen. Nach der Beschreibung geeigneter Materialgleichungen folgt eine Zusammenstellung des gekoppelten chemo-elektro-mechanischen Feldproblems. Zur Lösung des gekoppelten Feldproblems wird die Finite-Elemente-Methode (FEM) genutzt. Die Validierung des erstellten Modells wird anhand eines Quellexperiments von Frijns et al. durchgeführt. Durch den Vergleich mit einem auf der Theorie Poröser Medien (TPM) basierenden Modells kann das hier verwendete Modell abgeglichen werden, wobei eine gute Übereinstimmung zwischen den Ergebnissen beider Modelle herrscht.
Basierend auf den Vorarbeiten von Wallmersperger et al. und Attaran et al. wurde das hier genutzte Modell um einen zeitlichen Term in der Beschreibung der Referenzkonzentration erweitert. Hieraus resultiert eine qualitative Verbesserung in der Darstellung des zeitlichen Quellverlaufes bei chemischer Stimulation. In Anlehnung an vorhergehende Arbeiten auf dem Gebiet erfolgt die Kopplung von der mechanischen Domäne zur chemischen Domäne über eine vom Verzerrungszustand abhängige Konzentration gebundener Ladungsträger. Hier durchgeführte Untersuchungen zeigen, dass diese Rückkopplung auch unter der Annahme kleiner Deformationen Relevanz besitzt und nicht vernachlässigt werden sollte. Anders als z.B. mit der TPM oder mit dem Flory-Rehner Modell ist es unter Verwendung des hier entwickelten Modells möglich, Grenzschichtphänomene zwischen Gel und Lösungsmittelbad aufzulösen. Durch die Untersuchung der Grenzschicht zeigt sich eine annähernd lineare Abhängigkeit der Grenzschichtdicke von der relativen
Permittivität des Hydrogels. Auch lässt sich ein Zusammenhang zwischen der Konzentration gebundener Ladungsträger und der Grenzschichtdicke identifizieren.
Um das Potential der gewählten Methode zu demonstrieren, wird anhand des Beispiels eines einfachen zweischichtigen Hydrogel-Biegebalkens eine Untersuchung über die inneren Vorgänge im Schichtsystem durchgeführt. Die Untersuchung gewährt hierbei Einblicke z.B. in den zeitlichen Verlauf des elektrischen Potentials, der Konzentration mobiler Ionen sowie der resultierenden Verzerrungen. In einem abschließenden numerischen Beispiel wird die Kontaktkraft sowie die auftretenden mechanischen Spannungen in einem Greifersystem, bestehend aus zwei hydrogelbasierten Biegeaktoren, ausgewertet. / Aim of this work is to model the behavior of polyelectrolyte gels and hydrogel-layer systems based on continuum mechanics. For this, numerical simulations are conducted to gain an insight into the complex phenomena occurring during the swelling process of hydrogels. The process of modeling and simulation is important to enhance the understanding of these systems and to improve the properties of hydrogel-based applications. Also, errors resulting from a lack of knowledge as well as from the number of required experimental works can be reduced significantly.
Hydrogels belong to the class of smart materials. Therefore, they show a response to changes in their environment by a reversible change of material properties. Polyelectrolyte hydrogels consist of a polymer network with fixed ionic groups. Within the void of the polymer matrix, interstitial water containing mobile ions is present. The properties of hydrogels depend on their chemical composition and can be adjusted for the specified application. They exhibit a reversible swelling or deswelling process when subjected to electric fields or changes of the chemical composition of the surrounding solution bath.
This reversible volume change opens a wide field of potential applications. The most promising field of application seems to be in the realms of measurement systems, since hydrogels can be used for the investigation of very specific chemical or biochemical measures. In addition, hydrogels can be used as active components in microfluidic devices, which open and close depending on the chemical composition of the bypassing fluid. Without a need for external control and energy supply, they are suitable for miniaturisation. As a consequence of their high energy density, hydrogels are also relevant candidates for the development of lightweight and energy efficient actuator systems. Due to their size-dependent reaction time, their use in small-scale actuatoric devices is the most promising in this field. the combination of multiple hydrogel layers can be used to increase the sensitivity of hydrogel-based measurement devices. Hydrogel-layer systems can also be used for actuatoric devices, such as gripper devices or microfluidic valves.
In the presented model, the interaction between the electrical, chemical and the mechanical fields are respected. It is assumed, that the complex microstructure of hydrogels may be treated as a continuum and that the relevant phenomena can be described using field equations.
A brief introduction on polyelectrolyte gels and hydrogel-layer systems is given. Here, their microstructure is described and relevant applications are summarized. By giving a brief literature review, the modeling approaches of this thesis are motivated and arranged within the field of existing models. After an introduction of relevant basics of physical chemistry, the model formulation is presented. Here, the chosen kinematics as well as the used balance equations and material laws are given. They include the conservation of mass for the polymer and the ionic species, the conservation of linear momentum and angular momentum as well as the Maxwell equations. After presenting suitable material laws, the field equations of the fully coupled chemo-electro-mechanical field problem are summarized. The numerical solution of the field problem is obtained by applying the Finite-Element-Method (FEM).
The validation of the presented model is conducted by a comparison with experimental results of Frijns et al. After this, the used model is compared with the Theory of Porous Media (TPM), which results in a good agreement of both approaches. Since the used model represents an extension of the preliminary work of Wallmersperger et al. and Attaran et al., differences in the models are discussed. By extending the previous models by an additional temporal term in the description of the reference concentration, a qualitative improvement of the prediction of the time behavior under chemical stimulation is achieved. As done in preliminary works, the mechanical and the chemical domains are coupled by a strain dependent concentration of fixed charges. It can be shown, that this backcoupling is of significance also for small deformations. In contrast to the TPM and the Flory-Rehner model, phenomena occurring in the interface layer between adjacent domains can be investigated using the presented model. An almost linear dependence between the relative permittivity of the hydrogel and the thickness of the boundary layer is observed. It also depends on the concentration of fixed charges in the polymer network. To demonstrate the potential of the applied method, a numerical investigation of a two-layered hydrogel bending actuator is investigated. The results give an insight for example into the time-dependent distribution of the electric potential, the concentration of mobile ions as well as the resulting strains. In another numerical example, the contact force in a gripper consisting of two hydrogel-based bending actuators is evaluated.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:32314
Date03 December 2018
CreatorsSobczyk, Martin
ContributorsWallmersperger, Thomas, Gerlach, Gerald, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0034 seconds