Due to the limited regenerative capacity of the central nervous system (CNS) upon injury, regenerative medicine and tissue engineering strategies show great promise for treatment. These aim to restore tissue functions by combining principles of cell biology and engineering, using biomaterial scaffolds which can help in recapitulating the 3D environment of the brain and improving cell survival after grafting.
Stroke and TBI are severe forms of disruptions of brain architecture, and two of the leading causes of mortality and morbidity worldwide, as no effective treatments are available. Several studies report how neural stem cells (NSCs) are able to improve functional recovery upon transplantation. However, the efficacy of these treatments is limited because of the mortality these cells are subject to after transplantation. In this context, the transplantation of mesenchymal cells (MSCs) has shown beneficial effects by secreting molecules and factors that help in the healing process.
In this study, we tested alginate-based hydrogels as candidates to support human NSCs and MSCs transplantation into the brain, in the view of exploiting the beneficial effects of both and analyzing whether their combined use could have a synergistic effect.
In the first part, we studied the suitability of alginate-based scaffolds for the three-dimensional encapsulation and culture of hNSCs and hMSCs. We analyzed their ability to support cell survival, and we evaluated whether changes in their concentration or modifications with ECM molecules could influence cell viability. We showed that the best survival conditions are found when using an RGDs-functionalized alginate scaffold at a low concentration (0.5% w/v). We then worked on the identification of the best conditions for MSCs culture and the definition of coculture conditions. Since serum is necessary for MSCs, but it is reported to induce glial differentiation of NSCs, we explored two different experimental setups. On one hand, we investigated the feasibility to exploit biomaterials to create "compartmentalized" cocultures that would at least partially retain serum. In parallel, we positively observed that MSCs can survive, proliferate and maintain their stemness even in absence of serum, supporting the hypothesis that the use of “compartmentalized” coculture systems would likely be exploitable for MSCs culture.
Finally, we tested the reported beneficial effects of MSCs in our 3D culture system, in which NSCs do not show a great viability. Encapsulated NSCs were cultured on an MSCs monolayer, and we analyzed cell survival, proliferation, differentiation and stemness retention. Gene expression analyses highlighted that NSCs maintain stemness characteristics, but we were not able to observe any improvement in NSCs survival in coculture, with respect to standard culture.
In the last part of the project we decided to test our system for tissue engineering approaches, exploiting axotomized brain organotypic slices (OSCs). We evaluated the presence of cells 7 days after transplantation, their integration in the OSCs and glial response. Preliminary results suggest that the biomaterial does not cause activation of glial cells, although stem cells do not seem to migrate out of scaffold and integrate into the brain slice.
Identifer | oai:union.ndltd.org:unitn.it/oai:iris.unitn.it:11572/262798 |
Date | 26 May 2020 |
Creators | Speccher, Alessandra |
Contributors | Speccher, Alessandra, Casarosa, Simona |
Publisher | Università degli studi di Trento, place:Rovereto (TN) |
Source Sets | Università di Trento |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/openAccess |
Relation | firstpage:1, lastpage:247, numberofpages:247 |
Page generated in 0.0063 seconds