Bacterial protein WrbA from E. coli is the founding member of a new family of FMN-dependent NAD(P)H oxidoreductases, forming a functional and structural bridge between bacterial flavodoxin and certain mammalian NAD(P)H:quinone oxidoreductase. For these reasons, protein WrbA is recently intensively studied using various analytical and computing methods. Protein WrbA participates in the protection of cells against oxidative stress, but precise function of the protein WrbA in vivo is still unknown. Protein WrbA forms multimers in solutions. In μM concentrations and at low temperature (4 řC) the protein is in the form of a dimer, with increasing temperature becomes tetrameric. Available three-dimensional crystal structure contains the information about the tetrameric form of the protein, the dimeric form has not been structurally characterized. This thesis was focused on the study of the dynamic behavior of protein WrbA in solution using methods of hydrogen-deuterium exchange and chemical cross-linking followed by mass spectrometric analysis with high resolution (FT-ICR). Behavior of the protein was monitored according to the presence of cofactor FMN. Effect of temperature and protein concentration was also studied. Hydrogen-deuterium exchange provided information about solvent accessibility and...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:331768 |
Date | January 2015 |
Creators | Rosůlek, Michal |
Contributors | Novák, Petr, Vaněk, Ondřej |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds