Return to search

The Synthesis of Modular Block Copolymers

A novel methodology has been developed for the formation of block copolymers that combines ring-opening metathesis polymerization (ROMP) with functional chain-transfer agents (CTAs), functional chain-terminators (CTs) and self-assembly. Telechelic homopolymers of cyclooctene derivatives that are end-functionalized with hydrogen-bonding or metal-coordination sites are formed via the combination of ROMP with a corresponding functional CTA. These telechelic homopolymers are fashioned with a high control over molecular weight and without the need for post-polymerization procedures. The homopolymers undergo fast and efficient self-assembly with their complement homopolymer or small molecule analogues to form block copolymer architectures. The block copolymers have similar association constants to small molecule analogues described in the literature, regardless of size or the nature of the complementary unit or the polymer side-chain. The ROMP of side-chain functionalized norbornene polymers is coupled with functional CTs to produce block copolymer with main- and side-chain self-assembly sites. Combinations of these norbornene polymers with their complement polymer via self-assembly produce non-covalent AB type block copolymers fast and efficiently. ABA type block copolymers are realized by combining the difunctional homopolymer formed via the CTA pathway with the CT synthesized mono-functional polymer. These polymers show similar association constants regardless of the sequence of polymer formation.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/14497
Date09 April 2007
CreatorsHigley, Mary Nell
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeThesis

Page generated in 0.0015 seconds