Return to search

Groundwater Modeling and Hydrogeological Parameter Estimation: Potomac Aquifer System, SWIFT Research Center

The Sustainable Water Interactive for Tomorrow (SWIFT) project in eastern Virginia is a Managed Aquifer Recharge project designed to alleviate the depletion of the Potomac Aquifer System due to unsustainable groundwater withdrawals. At the SWIFT Research Center (SWIFTRC) in Nansemond, VA, a pilot testing well (TW-1) has been implemented to help determine the feasibility of full-scale implementation. The pumping data from TW-1 and observation head data from surrounding monitoring wells (MW) at the SWIFTRC were used to calculate hydrogeological parameters (transmissivity, hydraulic conductivity, specific storage, and storage coefficient). Two sets of data were analyzed from before and after TW-1 was rehabilitated to account for the change in the flow distribution to each screen in TW-1. Comparing the results to past literature, the calculated (Theis and Cooper-Jacob methods) hydraulic conductivity/transmissivity values are within the same order of magnitude. Using borehole logs as well as apparent conductance and resistivity logs, multiple single and multi-layered models for both the upper and middle Potomac aquifers were produced with MODFLOW. Parameter estimation using MODFLOW and PEST and the two sets of observation data resulted in hydrogeological parameters similar to those calculated using Theis and Cooper-Jacob methods. The change in the hydraulic conductivity and specific storage between the pre and post rehabilitation flow distributions is proportional to that change in the flow distribution. For future modeling of the aquifer system, the hydrogeological parameters from the model using the 4/26/19 data set with the post rehabilitation flow distribution is recommended. Drawdown results from a multi-layered MODFLOW model were compared to results using the Theis method using both the Theis-calculated and MODFLOW-PEST modeled hydrogeological parameters. The results were nearly identical except for the Upper Potomac Aquifer (UPA) layer 1, as the model has a large change in aquifer thickness with distance from TW-1 that the Theis-based calculations do not consider. Travel times from the monitoring wells to TW-1 were calculated with the single and multi-layered models pumping 700 GPM from TW-1. Travel times from the SWIFT MW within the UPA sublayers ranged from 204 to 597 days depending on the sublayer, while travel times from the USGS MW within the UPA sublayers ranged from 2,395 to 7,859 days. For the single layer model of the UPA, the travel time from the SWIFT MW to TW-1 was 372 days while the travel time from the USGS MW was 4,839 days. Travel times from the SWIFT MW within the MPA sublayers were 416 and 1,195 days, while travel times from the USGS MW within the MPA sublayers were 4,339 and 11,245 days. For the single layer model of the MPA, the travel time from the SWIFT MW to TW-1 was 743 days while the travel time from the USGS MW was 7,545 days. / Master of Science / The Sustainable Water Interactive for Tomorrow (SWIFT) project in eastern Virginia is a project designed to help slow the depletion of the Potomac Aquifer System due to unsustainable groundwater withdrawals. At the SWIFT Research Center (SWIFTRC) in Nansemond, VA, a testing well (TW-1) has been implemented to help determine if the full-scale implementation of the SWIFT project is feasible. The pumping data from TW-1 and observation head data from surrounding monitoring wells (MW) at the SWIFTRC were used to calculate hydrogeological parameters (transmissivity, hydraulic conductivity, specific storage, and storage coefficients). These parameters help describe the behavior of the aquifer system. Two sets of data were analyzed from before and after TW-1 was rehabilitated to account for the change in the flow distribution within TW-1. Comparing the results to past literature, the calculated (using analytical methods, Theis and Cooper-Jacob methods) hydraulic conductivity/transmissivity values are within the same order of magnitude. Using data from the boreholes, multiple single and multi-layered models for both the upper and middle Potomac aquifers were produced with MODFLOW, a groundwater modeling software. Estimating parameters using observation data within MODFLOW resulted in hydrogeological parameters similar to those calculated using the Theis and Cooper-Jacob methods. The change in the hydraulic conductivity and specific storage between the pre and post rehabilitation flow distributions within TW-1 is proportional to that change in the flow distribution. For future modeling of the aquifer system, the hydrogeological parameters from the model using the 4/26/19 (most recent) data set with the post rehabilitation (more current) flow distribution is recommended.

Drawdown (decrease in the water table) results from a multi-layered MODFLOW model were compared to results using the Theis method using both the Theis-calculated and MODFLOW modeled hydrogeological parameters. The results were nearly identical except for the Upper Potomac Aquifer (UPA) layer 1, as the model has a large change in aquifer thickness with distance from TW-1 that the Theis-based calculations do not consider.

The time it took for a particle of water to travel from the monitoring wells to TW-1 were calculated with the single and multi-layered models pumping 700 GPM from TW-1. Travel times from the SWIFT MW within the UPA sublayers ranged from 204 to 597 days depending on the sublayer, while travel times from the USGS MW within the UPA sublayers ranged from 2,395 to 7,859 days. For the single layer model of the UPA, the travel time from the SWIFT MW to TW-1 was 372 days while the travel time from the USGS MW was 4,839 days. Travel times from the SWIFT MW within the MPA sublayers were 416 and 1,195 days, while travel times from the USGS MW within the MPA sublayers were 4,339 and 11,245 days. For the single layer model of the MPA, the travel time from the SWIFT MW to TW-1 was 743 days while the travel time from the USGS MW was 7,545 days.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99171
Date29 June 2020
CreatorsMatynowski, Eric D.
ContributorsEnvironmental Science and Engineering, Widdowson, Mark A., Burbey, Thomas J., Hester, Erich T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0142 seconds