Return to search

Benzaldehyde Lyase Catalyzed Synthesis Of Novel Acyloins

&amp / #945 / -Hydroxy phosphonates are versatile building blocks for the synthesis of many biologically active compounds that display antiviral, antibacterial, anticancer, pesticide activities beside their enzyme inhibitory activities such as they are the inhibitors of rennin or human immunodeficiency virus (HIV) protease and polymerase.

Benzaldehyde lyase is able to catalyze not only C-C bond formation reactions but also C-C bond breaking reactions with high enantioselectivity that brings about the development of new synthetic methodologies for the synthesis of hydroxy ketones which are the key intermediates in the synthesis of many biologically active compounds due to the versatility of stereogenic center for developing structural diversity.

There are several synthetic methodologies for the synthesis of hydroxy phoshonates however, in this work we have achieved the synthesis of hydroxy phoshonates through C-C bond forming reactions catalyzed by Benzaldehyde lyase that offers the use of green methodologies. Moreover, we have achieved the synthesis of hydroxy ketones which are versatile building blocks in the synthesis of many biologically active compounds via the immobilization of BAL enzyme on superparamagnetic solid support with high yield and high enantioselectivity.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12610901/index.pdf
Date01 September 2009
CreatorsSimsek, Ilke
ContributorsDemir, Ayhan Sitki
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds