This dissertation describes two independent studies related to charged aerosols. The first study examines the role of electrical conductivity on the amounts of charge and mass emitted during the break-up of charged droplets via Coulombic fission. The second study examines the hygroscopic behavior of mixed particles. The results from both studies are presented here in detail along with an in-depth discussion of pertinent literature and applications in modern technologies.
Charged droplets break-up via a process termed Coulombic fission when their charge density reaches a certain level during which they emit a portion of their charge and mass in the form of progeny microdroplets. Although Rayleigh theory can be used to predict the charge level at which break-ups occur, no equivocal theory exists to predict the amounts of charge or mass emitted or the characteristics of the progenies. Previous investigations have indicated that the electrical conductivity of a charged droplet may determine how much charge and mass are emitted during its break-up via Coulombic fission. To further examine this supposition, charged droplets having known electrical conductivities were observed through multiple break-ups while individually levitated in an electrodynamic balance. The amounts of charge and mass emitted during break-ups were determined using a light scattering technique and changes in the DC null point levitation potentials of the charged droplets. Here, electrical conductivity was found to increase and decrease the amounts of charge and mass emitted, respectively, while having no effect on the charge level at which break-ups occurred. The findings of this investigation have significant bearing in nanoparticle generation and electrospray applications.
The hygroscopic behavior of atmospherically relevant inorganic salts is essential to the chemical and radiative processes that occur in Earth’s atmosphere. Furthermore, studies have shown that an immense variety of chemical species exist in the atmosphere which inherently mix to form complex heterogeneous particles with differing morphologies. However, how such materials and particle morphologies affect the hygroscopic behavior of atmospherically relevant inorganic salts remains mostly unknown. Therefore, the effects of water insoluble materials, such as black carbon, on the hygroscopic behavior of inorganic salts were examined. Here, water insoluble solids were found to increase the crystallization relative humidities of atmospherically relevant inorganic salts when internally mixed. Water insoluble liquids however, were found to have no effect on the hygroscopic behavior of atmospherically relevant inorganic salts. The findings of this investigation have significant bearing in atmospheric modeling.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1140 |
Date | 01 January 2011 |
Creators | Hunter, Harry Cook, III |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0019 seconds