In this study, a Jk-integral based computational method will be developed to conduct fracture analysis of fibrous composite laminates that possess variable fiber spacing. This study will be carried out for the fibrous composites exposed to not only thermal but also hygroscopic boundary condition, which results hygrothermal load. Formulation of the Jk-integral will be carried out by using the constitutive relations of plane orthotropic hygrothermoelasticity. One of the most important challenges of this study is to change Jk-integral formulation into domain independent form, because dealing with infinitely small domains in solving the integral would be frustrating. Developed form of Jk-integral will be merged to ANSYS, a finite element analysis software. Numerical results will be generated so as to assess the influence of variable fiber spacing on the modes I and II stress intensity factors, energy release rate, and the T-stress.
For validation and comparison, some of the results are also obtained using Displacement Correlation Technique (DCT).
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12615370/index.pdf |
Date | 01 January 2013 |
Creators | Saeidi, Farid |
Contributors | Dag, Serkan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | Access forbidden for 1 year |
Page generated in 0.0021 seconds