The presented master’s thesis deals with the application of the gradient elasticity in fracture mechanics problems. Specifically, the displacement and stress field around the crack tip is a matter of interest. The influence of a material microstructure is considered. Introductory chapters are devoted to a brief historical overview of gradient models and definition of basic equations of dipolar gradient elasticity derived from Mindlin gradient theory form II. For comparison, relations of classical elasticity are introduced. Then a derivation of asymptotic displacement field using the Williams asymptotic technique follows. In the case of gradient elasticity, also the calculation of the J-integral is included. The mathematical formulation is reduced due to the singular nature of the problem to singular integral equations. The methods for solving integral equations in Cauchy principal value and Hadamard finite part sense are briefly introduced. For the evaluation of regular kernel, a Gauss-Chebyshev quadrature is used. There also mentioned approximate methods for solving systems of integral equations such as the weighted residual method, especially the least square method with collocation points. In the main part of the thesis the system of integral equations is derived using the Fourier transform for straight crack in an infinite body. This system is then solved numerically in the software Mathematica and the results are compared with the finite element model of ceramic foam.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:231071 |
Date | January 2014 |
Creators | Klepáč, Jaromír |
Contributors | Profant, Tomáš, Kotoul, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds