Return to search

Scramjet Experiments using Radical Farming

Scramjet engines are the focus of considerable interest for propulsion in the hypersonic flow regime. One of the serious technical challenges for developing scramjets is reducing the skin friction drag on the engine. The combustion chamber, in particular, is a major contributor to the skin friction drag because of the high density of the flow through that region. This investigation focuses on reducing the combustion chamber skin friction drag by minimising the surface area and size of the combustion chamber and by employing a novel approach to accomplishing combustion. The first design criterion is addressed by using a single internal-combustor scramjet configuration, as opposed to multiple external combustors, and by injecting the fuel on the intake to reduce the mixing length required in the combustor. The second design criterion refers to the use of a new technique called radical farming. This uses the highly two-dimensional nature of the flow through the engine, which is created by deliberately ingesting the leading edge shocks, to achieve combustion at lower mean static pressures and temperatures than generally expected. A simplified approximate theoretical analysis of the radical farming concept is presented. Experiments were conducted in the T4 free-piston shock tunnel on a scramjet model with a single rectangular constant cross-sectional area combustion chamber. Pressure measurements were taken along the centreline of the intake, combustion chamber and thrust surface and across the model width at three locations. Gaseous hydrogen fuel was injected halfway along the intake at a range of equivalence ratios between zero and one. The combustion chamber height was varied from 20mm to 32mm, which varied the contraction ratio of the engine from 4.1 to 2.9. The experiments were conducted at a stagnation enthalpy of either 3MJ/kg or 4MJ/kg. The nominal 3MJ/kg condition corresponds to Mach 7.9 flight at an altitude of 24km. The majority of the 4MJ/kg experiments were conducted at a nominal condition corresponding to Mach 9.1 flight at an altitude of 32km. A small number of 4MJ/kg experiments were conducted at simulated flight altitudes of between 30 and 38km; the flight Mach number for these experiments was approximately 9.0. Thrust was calculated by integrating the centreline pressure distribution over the area of the thrust surface, assuming that the pressure at any axial location was constant across the engine width. These experimental thrust values were compared with theoretical estimates obtained using a one-dimensional analysis and a quasi-two-dimensional analysis. The comparison provided an indication of the level of completion of combustion in the experiments. The difference in thrust produced as a result of combusting fuel was examined by plotting the incremental specific impulse against equivalence ratio. Experimental and theoretical results agreed best at the higher equivalence ratios. Turbulent boundary layer separation correlations were used to provide reasonable estimates for the equivalence ratio at which the flow choked. The drag on the internal flowpath of the scramjet engine was estimated using the quasi-two-dimensional analysis. This drag estimate was combined with the experimental thrust measurements to provide estimates of the net specific impulse. Positive net specific impulse estimates were obtained above a certain minimum equivalence ratio, which depended on the contraction ratio and the test condition. The engine performance was observed to be highly dependent on the two-dimensional shock structure within the engine. Thrust and specific impulse were observed to decrease with increasing simulated flight altitude, as expected. Positive net specific impulse estimates were obtained at equivalence ratios of approximately one for simulated flight altitudes below 35km. Assuming complete combustion and that an equivalence ratio of one can be reached, the configuration considered in the present study can theoretically reach a net specific impulse of approximately 1000s at the 3MJ/kg condition and 500s at the 4MJ/kg condition. These numbers provide a promising testimonial for the use of this configuration, with modifications, as a more efficient alternative to rocket engines.

Identiferoai:union.ndltd.org:ADTP/253676
CreatorsOdam, Judy
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0016 seconds