by Lam Kai Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 156-165). / Abstract also in Chinese. / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1 --- Tumor Necrosis Factor-α in Cancer Treatment --- p.1 / Chapter 1.1.1 --- Historical Background --- p.1 / Chapter 1.1.2 --- Mechanisms of Action --- p.2 / Chapter 1.1.2.1 --- Production of Reactive oxidative Species / Chapter 1.1.2.2 --- Increase of Intracellular Free Calcium Concentration / Chapter 1.1.2.3 --- Activation of Ca2+/Mg2+-dependent Endonuclease / Chapter 1.1.2.4 --- Decrease of glucose uptake and Protein Synthesis / Chapter 1.1.2.5 --- Formation of Ion-permeable Channel / Chapter 1.1.2.6 --- Activation of Phospholipase / Chapter 1.1.2.7 --- Increase of S-phase Cells / Chapter 1.1.2.8 --- Immunomodulatory Effects / Chapter 1.1.3 --- Resistance of Cells to TNF-α --- p.7 / Chapter 1.1.4 --- Clinical Studies --- p.11 / Chapter 1.1.5 --- Side Effects --- p.12 / Chapter 1.2 --- Hyperthermia and Cancer Treatment --- p.14 / Chapter 1.2.1 --- Hyperthermic Agents --- p.15 / Chapter 1.2.2 --- Intrinsic Heat Sensitivity --- p.15 / Chapter 1.2.3 --- Mechanisms of Action --- p.17 / Chapter 1.2.3.1 --- Depolarization of Membrane Potential / Chapter 1.2.3.2 --- "Reduction of glucose transport and DNA, mRNA and Protein Synthesis" / Chapter 1.2.3.3 --- Decrease of Intracellular pH / Chapter 1.2.3.4 --- Calcium Imbalance / Chapter 1.2.3.5 --- Effect on Nucleolar Protein / Chapter 1.2.3.6 --- Apoptosis / Chapter 1.2.3.7 --- Induction of Autologous Tumor Killing / Chapter 1.2.3.8 --- "Blood Flow, Tumor Oxygenation and Vascular Damage" / Chapter 1.2.4 --- Clinical Studies --- p.20 / Chapter 1.3 --- Combined Treatment --- p.21 / Chapter 1.3.1 --- Combined Treatment with TNF-α and Fixed-temperature Hyperthermia --- p.22 / Chapter 1.3.2 --- Combined Treatment with TNF + Step-down Hyperthermia --- p.22 / Chapter 1.3.3 --- In Vivo Study --- p.23 / Chapter 1.3.4 --- Sequence of Treatment --- p.24 / Chapter 1.3.5 --- Proposed Mechanism of Synergism --- p.24 / Chapter 1.4 --- Objective of Study --- p.26 / Chapter 1.4.1 --- Sequence of Treatments --- p.26 / Chapter 1.4.2 --- Comparison of Treatments' Effectiveness --- p.27 / Chapter 1.4.3 --- Effect on Normal Cell --- p.27 / Chapter 1.4.4 --- Effect on Distribution of Cells in Cell Cycle Phases --- p.28 / Chapter 1.4.5 --- In Vivo Study --- p.28 / Chapter Chapter Two: --- Materials and Methods --- p.30 / Chapter 2.1. --- Materials --- p.30 / Chapter 2.1.1 --- For Cell Culture --- p.30 / Chapter 2.1.2 --- In vitro Treatments --- p.31 / Chapter 2.1.3 --- DNA Electrophoresis --- p.31 / Chapter 2.1.4 --- Flow Cytometry --- p.32 / Chapter 2.2. --- Reagent Preparation --- p.33 / Chapter 2.2.1 --- Culture Media --- p.33 / Chapter 2.2.2 --- Human Recombinant Tumor Necrosis Factor alpha (rhTNF-α) --- p.33 / Chapter 2.2.3 --- Phosphate Buffered Saline (PBS) --- p.33 / Chapter 2.2.4 --- Lysis Buffer --- p.34 / Chapter 2.2.5 --- TE Buffer --- p.34 / Chapter 2.2.6 --- Proteinase K and Ribonuclease A (RNase A) --- p.34 / Chapter 2.2.7 --- 100 Base-Pair DNA Marker --- p.34 / Chapter 2.2.8 --- Propidium Iodide (PI) --- p.35 / Chapter 2.3 --- Methods --- p.35 / Chapter 2.3.1 --- Cell Culture --- p.35 / Chapter 2.3.1.1 --- Ehrlich Ascitic Tumor (EAT) and Human Leukemia (HL-60) / Chapter 2.3.1.2 --- Human Coronary Artery Endothelial Cells (HCAEC) / Chapter 2.3.2 --- In vitro Experiments --- p.36 / Chapter 2.3.3 --- Tumor Necrosis Factor Treatment --- p.37 / Chapter 2.3.4 --- Hyperthermia Treatments --- p.37 / Chapter 2.3.5 --- Cell Counting --- p.38 / Chapter 2.3.5.1 --- Trypan Blue Exclusion Assay / Chapter 2.3.5.2 --- Neutral Red Assay / Chapter 2.3.6 --- Determination of Additive or Synergistic Effect --- p.39 / Chapter 2.3.7 --- DNA Electrophoresis --- p.40 / Chapter 2.3.8 --- Flow Cytometry --- p.42 / Chapter 2.3.7.1 --- Preparation of Samples / Chapter 2.3.7.2 --- Flow Cytometry Acquisition / Chapter 2.3.7.3 --- Analysis / Chapter 2.3.9 --- In vivo Experiments --- p.44 / Chapter 2.3.8.1 --- Animal Strain / Chapter 2.3.8.2 --- Cell Line / Chapter 2.3.8.3 --- Tumor Necrosis Factor Treatment / Chapter 2.3.8.4 --- Hyperthermia Treatments / Chapter 2.3.8.5 --- Test of Body Temperature / Chapter 2.3.8.6 --- Cell Harvesting / Chapter Chapter Three: --- Result --- p.50 / Chapter 3.1 --- Optimal Sequence of Treatments --- p.50 / Chapter 3.1.1 --- Optimal Sequence of Treatments on Murine Ehrlich Ascitic Tumor (EAT) cells --- p.50 / Chapter 3.1.1.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.1.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.1.1.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.1.2 --- Optimal Sequence of Treatments on Human Leukemia cells HL-60 --- p.60 / Chapter 3.1.2.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.2.2 --- TNF + Step-Down Hyperthermia2 / Chapter 3.1.2.3 --- TNF + Step-Down Hyperthermia3 / Chapter 3.2 --- Comparison of Effectiveness of Treatments --- p.72 / Chapter 3.2.1 --- Effectiveness of Various treatments on EAT cells --- p.72 / Chapter 3.2.2 --- Synergistic Effect between rhTNF-α and Hyperthermia on EAT cells --- p.74 / Chapter 3.2.3 --- Decrease of Relative Growth and Viability of EAT with Time --- p.79 / Chapter 3.2.3.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.3.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.3.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.2.4 --- Comparison of Effectiveness of Various Treatments on HL-60 cells --- p.82 / Chapter 3.2.5 --- Synergistic Effect between rhTNF-α and Hyperthermia on HL-60 cells --- p.87 / Chapter 3.2.6 --- Change of Relative Growth and Viability of HL-60 with Time --- p.90 / Chapter 3.2.6.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.6.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.6.3 --- TNF + Step-down hyperthermia3 / Chapter 3.3 --- Cell Death Pathway --- p.96 / Chapter 3.3.1 --- Experiments on Ehrlich Ascitic Tumor (EAT) Cells --- p.96 / Chapter 3.3.2 --- Experiments on Human Leukemia (HL-60) Cells --- p.100 / Chapter 3.4 --- Experiment on Normal Cell --- p.104 / Chapter 3.5 --- Effect of TNF + Fixed-temperature Hyperthermia on the Cell Cycle Progression --- p.107 / Chapter 3.5.1 --- Different Times of TNF Administration and Distribution of EAT cells in Cell cycle --- p.107 / Chapter 3.5.2 --- Different Times of TNF Administration and Distribution of HL-60 cells in Cell Cycle --- p.114 / Chapter 3.5.3 --- Shift of Cells Cycle after TNF Treatment --- p.120 / Chapter 3.5.3.1 --- Response of Ehrlich Ascitic Tumor Cells / Chapter 3.5.3.2 --- Response of Human leukemia Cells / Chapter 3.6 --- Effectiveness of Treatments in vivo: --- p.129 / Chapter 3.6.1 --- Dose-dependent Response --- p.129 / Chapter 3.6.2 --- Change of Body Temperature During Hyperthermia --- p.131 / Chapter 3.6.3 --- Comparison of Effectiveness of Various Treatments in vivo --- p.133 / Chapter 3.6.4 --- Synergistic Effect Between rhTNF-α and Hyperthermia in vivo --- p.135 / Chapter Chapter Four: --- Discussion --- p.138 / Chapter 4.1 --- Optimal Sequence of Treatments --- p.139 / Chapter 4.2 --- Comparison of Various Treatments --- p.143 / Chapter 4.3 --- Distribution of Cells in Cell Cycle Phases --- p.149 / Chapter 4.4 --- In vivo Study --- p.153 / Chapter Chapter Five: --- References --- p.156
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322288 |
Date | January 1998 |
Contributors | Lam, Kai Yi., Chinese University of Hong Kong Graduate School. Division of Biochemistry. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, 165 leaves : ill. (some mounted) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0078 seconds