Il existe plusieurs théories du contrôle moteur, chacune présumant qu’une différente variable du mouvement est réglée par le cortex moteur. On trouve parmi elles la théorie du modèle interne qui a émis l’hypothèse que le cortex moteur programme la trajectoire du mouvement et l’activité électromyographique (EMG) d’une action motrice. Une autre, appelée l’hypothèse du point d’équilibre, suggère que le cortex moteur établisse et rétablisse des seuils spatiaux; les positions des segments du corps auxquelles les muscles et les réflexes commencent à s’activer. Selon ce dernier, les paramètres du mouvement sont dérivés sans pré-programmation, en fonction de la différence entre la position actuelle et la position seuil des segments du corps.
Pour examiner de plus près ces deux théories, nous avons examiné l’effet d’un changement volontaire de l’angle du coude sur les influences cortico-spinales chez des sujets sains en employant la stimulation magnétique transcrânienne (TMS) par-dessus le site du cortex moteur projetant aux motoneurones des muscles du coude. L’état de cette aire du cerveau a été évalué à un angle de flexion du coude activement établi par les sujets, ainsi qu’à un angle d’extension, représentant un déplacement dans le plan horizontal de 100°. L’EMG de deux fléchisseurs du coude (le biceps et le muscle brachio-radial) et de deux extenseurs (les chefs médial et latéral du triceps) a été enregistrée.
L’état d’excitabilité des motoneurones peut influer sur les amplitudes des potentiels évoqués moteurs (MEPs) élicitées par la TMS. Deux techniques ont été entreprises dans le but de réduire l’effet de cette variable. La première était une perturbation mécanique qui raccourcissait les muscles à l'étude, produisant ainsi une période de silence EMG. La TMS a été envoyée avec un retard après la perturbation qui entraînait la production du MEP pendant la période de silence.
La deuxième technique avait également le but d’équilibrer l’EMG des muscles aux deux angles du coude. Des forces assistantes ont été appliquées au bras par un moteur externe afin de compenser les forces produites par les muscles lorsqu’ils étaient actifs comme agonistes d’un mouvement.
Les résultats des deux séries étaient analogues. Un muscle était facilité quand il prenait le rôle d’agoniste d’un mouvement, de manière à ce que les MEPs observés dans le biceps fussent de plus grandes amplitudes quand le coude était à la position de flexion, et ceux obtenus des deux extenseurs étaient plus grands à l’angle d’extension. Les MEPs examinés dans le muscle brachio-radial n'étaient pas significativement différents aux deux emplacements de l’articulation.
Ces résultats démontrent que les influences cortico-spinales et l’activité EMG peuvent être dissociées, ce qui permet de conclure que la voie cortico-spinale ne programme pas l’EMG à être générée par les muscles. Ils suggèrent aussi que le système cortico-spinal établit les seuils spatiaux d’activation des muscles lorsqu’un segment se déplace d’une position à une autre. Cette idée suggère que des déficiences dans le contrôle des seuils spatiaux soient à la base de certains troubles moteurs d’origines neurologiques tels que l’hypotonie et la spasticité. / According to a dominant theory, the motor cortex is directly involved in pre-programming motor outcome in terms of movement trajectories and electromyographic (EMG) patterns. In contrast, the equilibrium point theory suggests that the motor cortex sets and resets the spatial thresholds, i.e., the positions of body segments at which muscles and reflexes begin to act. Movement parameters thereby emerge without pre-programming, depending on the difference between the actual and the threshold position of the body segments.
To choose between these two theories of motor control, we investigated corticospinal influences associated with voluntary changes in elbow joint angle in healthy individuals using transcranial magnetic stimulation (TMS) of the brain site projecting to motoneurons of the elbow muscles. In order to minimize the influence of motoneuronal excitability on the evaluation of corticospinal influences, motor evoked potentials (MEPs) elicited by TMS were obtained during the EMG silent period produced by a brief muscle shortening prior to the TMS pulse. MEPs were obtained at a flexion and an extension elbow angle actively established by subjects. MEPs were recorded from 2 elbow flexors (biceps and brachioradialis) and 2 extensors (medial and lateral heads of triceps). Flexor MEP amplitude was bigger at the elbow flexion position in the case of the biceps and extensor MEPs were bigger at the extension position in both extensors studied (reciprocal pattern). MEPs observed in the brachioradialis did not differ at the two elbow orientations.
A similar difference in corticospinal influences at the two elbow positions was often preserved when the tonic activity of elbow muscles was equalized by compensating the passive muscle forces at the two positions with a torque motor. Thus, corticospinal influences and EMG activity were de-correlated and it can be concluded that the corticospinal system is not involved in pre-determining the magnitude of motor commands to muscles. Results suggest that the corticospinal system resets the spatial thresholds for muscle activation when segments move from one position to another. This implies that deficits in spatial threshold control may underlie different neurological motor problems (e.g., hypotonia and spasticity).
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMU.1866/10295 |
Date | 04 1900 |
Creators | Brohman, Tara |
Contributors | Feldman, Anatol |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0025 seconds