Generally the primary goal of randomized clinical trials (RCT) is to make comparisons among two or more treatments hence clinical investigators require the most appropriate treatment allocation procedure to yield reliable results regardless of whether the ultimate data suggest a clinically important difference between the treatments being studied. Although recommended by many researchers, the utilization of minimization has been seldom reported in randomized trials mainly because of the controversy surrounding the statistical efficiency in detecting treatment effect and its complexity in implementation. Methods: A SAS simulation code was designed for allocating patients into two different treatment groups. Categorical prognostic factors were used together with multi-level response variables and demonstration of how simulation of data can help to determine the power of the minimization technique was carried out using ordinal logistic regression models. Results: Several scenarios were simulated in this study. Within the selected scenarios, increasing the sample size significantly increased the power of detecting the treatment effect. This was contrary to the case when the probability of allocation was decreased. Power did not change when the probability of allocation given that the treatment groups are balanced was increased. The probability of allocation { } k P was seen to be the only one with a significant effect on treatment balance. Conclusion: Maximum power can be achieved with a sample of size 300 although a small sample of size 200 can be adequate to attain at least 80% power. In order to have maximum power, the probability of allocation should be fixed at 0.75 and set to 0.5 if the treatment groups are equally balanced.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ufh/vital:11777 |
Date | January 2010 |
Creators | Marange, Chioneso Show |
Publisher | University of Fort Hare, Faculty of Science & Agriculture |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc (Biostatistics and Epidemiology) |
Format | 91 leaves; 30 cm, pdf |
Rights | University of Fort Hare |
Page generated in 0.0015 seconds