Return to search

"Testes de hipótese e critério bayesiano de seleção de modelos para séries temporais com raiz unitária" / "Hypothesis testing and bayesian model selection for time series with a unit root"

A literatura referente a testes de hipótese em modelos auto-regressivos que apresentam uma possível raiz unitária é bastante vasta e engloba pesquisas oriundas de diversas áreas. Nesta dissertação, inicialmente, buscou-se realizar uma revisão dos principais resultados existentes, oriundos tanto da visão clássica quanto da bayesiana de inferência. No que concerne ao ferramental clássico, o papel do movimento browniano foi apresentado de forma detalhada, buscando-se enfatizar a sua aplicabilidade na dedução de estatísticas assintóticas para a realização dos testes de hipótese relativos à presença de uma raíz unitária. Com relação à inferência bayesiana, foi inicialmente conduzido um exame detalhado do status corrente da literatura. A seguir, foi realizado um estudo comparativo em que se testa a hipótese de raiz unitária com base na probabilidade da densidade a posteriori do parâmetro do modelo, considerando as seguintes densidades a priori: Flat, Jeffreys, Normal e Beta. A inferência foi realizada com base no algoritmo Metropolis-Hastings, usando a técnica de simulação de Monte Carlo por Cadeias de Markov (MCMC). Poder, tamanho e confiança dos testes apresentados foram computados com o uso de séries simuladas. Finalmente, foi proposto um critério bayesiano de seleção de modelos, utilizando as mesmas distribuições a priori do teste de hipótese. Ambos os procedimentos foram ilustrados com aplicações empíricas à séries temporais macroeconômicas. / Testing for unit root hypothesis in non stationary autoregressive models has been a research topic disseminated along many academic areas. As a first step for approaching this issue, this dissertation includes an extensive review highlighting the main results provided by Classical and Bayesian inferences methods. Concerning Classical approach, the role of brownian motion is discussed in a very detailed way, clearly emphasizing its application for obtaining good asymptotic statistics when we are testing for the existence of a unit root in a time series. Alternatively, for Bayesian approach, a detailed discussion is also introduced in the main text. Then, exploring an empirical façade of this dissertation, we implemented a comparative study for testing unit root based on a posteriori model's parameter density probability, taking into account the following a priori densities: Flat, Jeffreys, Normal and Beta. The inference is based on the Metropolis-Hastings algorithm and on the Monte Carlo Markov Chains (MCMC) technique. Simulated time series are used for calculating size, power and confidence intervals for the developed unit root hypothesis test. Finally, we proposed a Bayesian criterion for selecting models based on the same a priori distributions used for developing the same hypothesis tests. Obviously, both procedures are empirically illustrated through application to macroeconomic time series.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-19082004-163615
Date23 June 2004
CreatorsSilva, Ricardo Gonçalves da
ContributorsAndrade Filho, Marinho Gomes de
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo somente para a comunidade da Universidade de São Paulo.

Page generated in 0.0185 seconds